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Abstract

Background: The disabling chronic pain syndrome erythromelalgia (also termed erythermalgia) is
characterized by attacks of burning pain in the extremities induced by warmth. Pharmacological
treatment is often ineffective, but the pain can be alleviated by cooling of the limbs. Inherited
erythromelalgia has recently been linked to mutations in the gene SCN9A, which encodes the
voltage-gated sodium channel Navl.7. Navl.7 is preferentially expressed in most nociceptive DRG
neurons and in sympathetic ganglion neurons. It has recently been shown that several disease-
causing erythromelalgia mutations alter channel-gating behavior in a manner that increases DRG
neuron excitability.

Results: Here we tested the effects of temperature on gating properties of wild type Navl.7 and
mutant L858F channels. Whole-cell voltage-clamp measurements on wild type or L858F channels
expressed in HEK293 cells revealed that cooling decreases current density, slows deactivation and
increases ramp currents for both mutant and wild type channels. However, cooling differentially
shifts the midpoint of steady-state activation in a depolarizing direction for L858F but not for wild
type channels.

Conclusion: The cooling-dependent shift of the activation midpoint of L858F to more positive
potentials brings the threshold of activation of the mutant channels closer to that of wild type
Navl.7 at lower temperatures, and is likely to contribute to the alleviation of painful symptoms
upon cooling in affected limbs in patients with this erythromelalgia mutation.
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Background

The disabling chronic pain syndrome erythromelalgia
(also termed erythermalgia) is characterized by attacks of
burning pain in the extremities that are triggered by mild
warmth; pharmacological treatment of this disorder is
ineffective in many patients [1]. Inherited erythromelalgia
(IEM) is transmitted in an autosomal dominant manner
[2]. Thus far seven mutations have been reported in
SCNIA, the gene which encodes the voltage-gated sodium
channel Nav1.7, in familial cases and some sporadic cases
(de novo, founder mutations) with IEM [3-8]. Nav1.7 is
preferentially expressed in dorsal root ganglion (DRG)
and sympathetic ganglion neurons [9-11]. Navl.7 is
present in the majority of nociceptive DRG neurons [12],
and has been shown to play an important role in the
pathophysiology of inflammatory pain [13,14]|. IEM-
linked missense mutations in Nav1.7 change gating prop-
erties of the channel [4,7,8,15-18] and render DRG neu-
rons hyperexcitable [4,8,18].

Attacks of pain in IEM are alleviated by cooling of the
limbs [4-7,19] but the physiological basis for this phe-
nomenon is not understood. Therefore, we investigated
the influence of cooling on the biophysical properties of
wild type Navl.7 (WT) and on the Navl.7 mutation
L858F, which has been shown to underlie IEM in Chinese
[7] and Canadian [5] families. Using whole-cell patch
clamp methods, we have found that cooling differentially
affects WT and L858F Navl.7 channels and diminishes
the difference in the voltage-dependence of activation
between the two channels, an effect that may contribute
to the clinical observation that cooling alleviates pain
symptoms of IEM.

Results

Current density decreases upon cooling

Whole-cell patch-clamp recordings of sodium currents
from HEK293 cells stably expressing WT or the IEM
mutant Nav1.7 channel (L858F) were carried out at three
different temperatures: 16°C, 25°C and 35°C. Both WT
and L858F mutant channels produced fast activating and
inactivating currents (Figure 1A). The macroscopic open-
ing and closing for WT and L858F channels were both
slowed with a reduction in temperature (Figure 1A).
While the inactivation time constants were not different
between WT and L858F channels, they were significantly
slower when the temperature of the recording solution
was cooled down for each channel. At a test potential of -
25 mV, for example, WT channels inactivated with time
constants of 0.35 + 0.03 ms (35°C, n = 6), 0.92 + 0.03 ms
(25°C,n=7)and 3.0 + 0.2 ms (16°C, n = 6), and L858F
channels inactivated with time constants of 0.38 + 0.16
(35°C, n = 8), 1.23 + 0.03 ms (25°C, n = 10) and 2.5 +
0.1 ms (16°C, n = 7). Comparison of the peak currents at
different temperatures showed a decrease in current den-

http://www.molecularpain.com/content/3/1/3

sity of WT and L858F channels when the temperature was
reduced from 35°C or 25°C to 16°C (Figure 1B).

Steady-state activation shifts with cooling for L858F but
not for WT

We have previously shown that the L858F mutation acti-
vates at more negative potentials than Nav1.7 [7]. This is
reflected in a negative shift in the midpoint (V;,,) of
steady-state activation (Figure 2A, B and 2C). We con-
firmed a significant hyperpolarizing shift in V, , of activa-
tion for L858F compared to WT at all three tested
temperatures. WT channels did not show a significant
shift in the V; , of activation at the three temperatures (-
274 + 0.6 mVat35°C,-29.4 + 0.5 mV at25°C and -28.1
+ 0.5 mV at 16°C). L858F channels, on the other hand,
demonstrated a significant shift of the V; , of activation to
more depolarized potentials when the temperature was
lowered to 16°C (-36.9 + 0.5 mV at 35°C, -36.3 = 0.5 at
25°Cand -32.8 + 0.5 at 16°C; p < 0.05). Depolarization
of the V,, of activation of L858F brings the activation
voltage-dependence of the mutant channel closer to that
of WT channels; the difference in V,,, of activation
between WT and L858F channels is reduced from 9.6 mV
at35°C,to4.6 mV at 16°C.

The steepness of the voltage dependence of conductance
for WT channels decreases upon cooling, which is
reflected in a greater slope factor value (Figure 2D). A sim-
ilar effect of cooling was seen for L858F. Thus for both WT
and L858F, the sensitivity of the channels to small voltage
changes close to the midpoint of activation is decreased at
low temperatures.

Steady-state fast inactivation shifts in a similar manner for
L858F and WT

At 25°C and 35°C L858F showed a significant shift of V;,
, of steady-state fast inactivation to more depolarized
potentials than WT, comparable to results previously
reported [7]. This difference between WT and L858F could
not be detected at 16°C (Figure 3A, B and 3C). The V, , of
steady-state fast inactivation is shifted in a hyperpolarized
direction by cooling from 35°C to 25°C for both chan-
nels {for WT from -84.2 + 0.7 mV (35°C) to -89 + 0.6 mV
(25°C); for L858F from -81.2 + 0.6 mV (35°C) to -86.2 +
0.2 mV (25°C)}.

Interestingly, further cooling of L858F to 16°C induced a
depolarizing shift in V; , of inactivation to a value close to
that found at 35°C (-79.5 + 0.6 mV, 16°C, L858F). The
V), of steady-state fast inactivation of WT channels at
16°C, however, is shifted to voltages more depolarized
than at 35°C (-77.8 + 0.6 mV, 16°C, WT, Figure 3C). The
slope factor of inactivation did not change due to cooling
for WT channels, and increases slightly for L858F chan-
nels (Figure 3D).

Page 2 of 10

(page number not for citation purposes)



Molecular Pain 2007, 3:3

25°C

B 450 - B Nav1.7
400 —x O L858F
m * *
2 350 9 /1 R
< 300 B
> i T
ﬁé 250
o 200
©
€ 150
o
5 100 A
O
50 A
O_ 1 11 1l 1 ]
O R e L P
© O W © 1 W
— N (4p] — N ™
Figure |

Cooling decreases current density for Navl.7 and
L858F. A. Representative current-voltage (I-V) families
recorded from HEK293 cells stably expressing Nav|.7 (left
column) or the mutation L858F (right column) at 16°C, 25°C
or 35°C. Cells were held at -120 mV and depolarizing steps
were applied to membrane potentials ranging from -80 mV
to 40 mV in 5 mV steps. B. Temperature dependence of the
current density for Nav|.7 (black bars, n = 17, 15, 25) and
L858F (white bars, n = 15, 16, 28) at the indicated tempera-
tures. Current density was measured as peak current divided
by cell capacitance. * indicate significant differences between
values with p < 0.05, tested with ANOVA and Tukey HSD
post hoc analysis.
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Ramp currents increase and deactivation slows upon
cooling

Application of slow depolarization pulses from a holding
potential of -120 mV to +20 mV in 600 ms mimic weak
natural stimuli and evoke ramp currents of WT channels
as described by Cummins et al. [20] (Figure 4A), and
L858F channels as shown by Han et al. [7] (Figure 4B).
The ramp current, measured as percentage of transient
peak current, increases with cooling for WT channels from
1.05% = 0.12% (35°C) and 0.98% + 0.04% (25°C) to
4.87% + 0.28% (16°C). A similar increase was observed
for L858F: 4.75% + 0.37% (35°C) and 4.36% + 0.25%
(25°C) to 8.07% + 0.32% (16°C, Figure 4C).

As shown previously [7] L858F produces larger ramp cur-
rents than WT channels. The difference in size of the ramp
current between WT and L858F channels is significant at
each temperature tested. However, the difference between
WT and L858F decreases with cooling, which can be seen
in the Q,, values for WT and L858F. Cooling from 25°C
to 16°C shows a Q,, value for WT of 5.94, whereas the
Q,, for L858F is 1.98, indicating a lower temperature sen-
sitivity of the mutant channel compared to WT. Therefore,
upon cooling the incremental difference in the size of
ramp currents between WT and L858F becomes smaller.
Thus, the relative increase in the ramp current for L858F
when cooled from 35°C to 16°C (170%) is smaller than
the relative increase for WT (463%; Figure 4C).

The increase in ramp current due to cooling could be
caused by slowing of deactivation. In order to test the
influence of temperature on deactivation kinetics, we
measured the deactivation time constants after a brief (0.5
ms) depolarization to -20 mV. At potentials of -40 mV
L858F channels deactivate more slowly than WT channels
at all three temperatures (deactivation time constant at
16°C: 2.9 + 0.2 ms WT, 4.7 + 0.4 ms L858F; at 25°C: 0.7
+ 0.03 ms WT, 2.6 + 0.09 ms L858F; at 35°C: 0.2 + 0.01
ms WT, 1.1 + 0.09 ms L858F), in agreement with previ-
ously published data [7]. At 25°C and 16°C, L858F chan-
nels also deactivate significantly more slowly than WT
channels at the potentials of -45 and -50 mV.

Figure 5 plots the deactivation time constants for WT and
Nav1.7 and L858F channelsat 16°C, 25°Cand 35°C, and
shows that both channels deactivate more slowly with
decreasing temperatures. The time constants at 16°C are
significantly larger than those at 35°C, for WT at poten-
tials more positive than -70 mV, and for L858F at poten-
tials greater than -80 mV.

Discussion

Because cooling is known to alleviate symptoms in IEM
[4-7,19], a disorder caused by mutations in Nav1.7 [1], we
have investigated the effect of temperature on the gating
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Figure 2

Activation midpoint shifts to more depolarized potentials upon cooling for L858F, but not for Navl.7. A. Volt-
age dependences of conductance for Navl.7 at 16°C (filled squares, n = 12), 25°C (filled triangles, n = 13) and 35°C (filled cir-
cles, n = 12). Conductance curves were derived from current-voltage families, normalized, and fitted with a Boltzmann
equation, as described in methods. B. Voltage dependences of conductance for L858F at 16°C (open squares, n = 8), 25°C
(open triangles, n = 15) and 35°C (open circles, n = 14). C. Midpoint of activation for Nav|.7 (black bars) and L858F (white
bars) plotted versus temperature. D. Slope factor of activation for Nav|.7 (black bars) and L858F (white bars) plotted versus
temperature. * indicate significant differences between values with p < 0.05, tested with ANOVA and Tukey HSD post hoc
analysis.
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Figure 3
Steady-state fast inactivation changes in a similar way for Navl.7 and L858F. A. Voltage dependences of steady-
state fast inactivation for Nav|1.7 at 16°C (filled squares, n = 12), 25°C (filled triangles, n = | 1) and 35°C (filled circles, n = 9).

Auvailability was assessed using a 500 ms prepulse ranging from -150 mV to 0 mV followed by a 40 ms test pulse to -20 mV. The
current was normalized to the largest current response evoked by the test pulse. Steady-state inactivation curves were fitted
with a Boltzmann equation, as described in methods. B. Voltage dependences of steady-state fast inactivation for L858F at
16°C (open squares, n = 9), 25°C (open triangles, n = | |) and 35°C (open circles, n = 10). C. Temperature dependence of the
midpoint of steady-state inactivation for Nav|.7 (black bars) and L858F (white bars) at the indicated temperatures. D. The
slope factor of steady-state inactivation for Navl.7 (black bars) and L858F (white bars) plotted versus temperature. * indicate
significant differences between values with p < 0.05, tested with ANOVA and Tukey HSD post hoc analysis.

Page 5 of 10

(page number not for citation purposes)



Molecular Pain 2007, 3:3

A
) Nav1.7
£ [
= E A ol
B R
x 11
3
Q 2
G
£ 31
8
g 41
o
54
6 .

-120-100 -80 -60 40 -20 0 20
2. voltage (mV)

1{  L8s8F

0.
14
2.
31 —35°C
4- 25°C
5. 16°C

percent of peak current (%) m

-120-100 -80 -60 -40 -20 0 20
voltage (mV)
C. g+ B Navl7?

*

*
—
g 4 O L858F -
E7- *
o = 1
=
3
£ 0]
o 44
o}
5 37
X 27
1_
0- LI
O 90 999
© 0 o © 0 W
- N ™ - N ™

Figure 4

Cooling increases currents elicited by slow ramp
depolarizations, and diminishes the difference
between Navl.7 and L858F. Representative current
traces of Navl.7 (A.) and L858F (B.) ramp currents at 16°C,
25°C and 35°C. Cells were held at -120 mV and stimulated
with a depolarizing voltage ramp that increased to 20 mV
within 600 ms. C. The bar graph shows the mean peak cur-
rents recorded during the voltage ramps expressed as per-
cent of transient peak current obtained during initial |-V
families, 3 min after breaking into the cell; black bars repre-
sent Navl.7 at 16°C (n = 8), 25°C (n = 9) and 35°C (n = 7);
white bars represent L858F at 16°C (n = 8), 25°C (n = 9) and
35°C (n = 8). * indicate significant differences between values
with p < 0.05, tested with ANOVA and Tukey HSD post hoc
analysis.
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behavior of WT channels and IEM mutant L858F Nav1.7
channels in HEK293 cells stably expressing these chan-
nels. Using whole-cell voltage-clamp, we show in this
study that lowering the temperature of the recording solu-
tion causes a decrease in current density, an increase in
ramp currents and a slowing in deactivation for both WT
and mutant channels. The V,, of steady-state activation
shows differential temperature sensitivity, and is depolar-
ized at lower temperatures for L858F, but not for WT
channels.

A temperature of 35°C was chosen as a reference because
it is closest to physiological conditions. The normal tem-
perature of human skin is ~34°C and it can be reduced
quickly when exposed to cold water [21]. While cell bod-
ies of DRG neurons are located close to the spinal cord
and are therefore at body temperature (~36°C), immu-
nolabelling for Nav1.7 is present along unmyelinated fib-
ers in situ [22], and is predicted to accumulate distally
within nerve terminals [11] in the skin, where the chan-
nels are exposed to large variations in temperature.

All patients with IEM reported to date experience pain
relief by cooling of the limbs. It is not known if all of the
mutant Nav1.7 channels respond to cooling in a manner
similar to the L858F channels described here. Lowering
temperature would be expected to lead to a reduced rate
of gating of Nav1.7 channels, as shown previously for
neuronal sodium channels in myelinated axons and for
muscle sodium channels [23,24]. The decrease in current
density that we observed with cooling can be explained at
least in part by slowed channel gating. We propose that
differential cold-induced modification of gating of
mutant Nav1.7 can explain, at least in part, why cooling
limbs helps to alleviate the pain.

The hyperpolarizing shift in the V; , of steady-state activa-
tion for L858F compared to WT, at all temperatures tested,
is in agreement with our earlier findings 7], and provides
a possible explanation for increased excitability in DRG
neurons expressing the IEM mutation. However, a reduc-
tion in temperature to 16°C causes a significant shift in a
depolarizing direction of the V,, of activation of L858F
channels, and this shift is not observed for WT channels.
This differential effect causes the activation V; , for L858F
to come closer to the V;;, of WT channels at 16°C. Inter-
estingly, the temperature effect on the slope factor of acti-
vation is the same for mutant and WT channels.
Increasing the activation threshold of L858F channels is
expected to result in a decrease in excitability in DRG neu-
rons expressing the mutant channel, suggesting a possible
contribution of this shift of V;/, of activation of the
mutant channel to alleviating the symptoms of IEM upon
cooling the affected extremities. The V,, of steady-state
fast inactivation, on the other hand, is influenced by tem-
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Cooling increases deactivation time constants for
Navl.7 and L858F. A. Navl.7 deactivates more slowly at -
50 mV, -45 mV and -40 mV when temperatures are lowered
from 35°C (filled circles, n = 8) to 25°C (filled triangles, n =
8) and 16°C (filled squares, n = 6). Deactivation time con-
stants were obtained by a single exponential fit of tail cur-
rents elicited by repolarization to the indicated potentials
from a brief depolarization of 0.5 ms to -20 mV. B. L858F
deactivates more slowly at potentials ranging from -55 mV to
-40 mV when temperatures are lowered from 35°C (open
circles, n = 7) to 25°C (open triangles, n = 7) and 16°C (open
squares, n = 6). * indicate significant differences to the values
at 35°C with p < 0.05, tested with ANOVA and Tukey HSD
post hoc analysis.

perature in the same way for WT and L858F channels;
therefore, a contribution of the shifts in fast inactivation
properties to pain alleviation induced by cooling seems
unlikely.

Temperature changes have been shown to trigger clinical
changes in patients harboring some mutations of the car-
diac sodium channel (Nav1.5) and the skeletal muscle
sodium channel (Nav1.4) [25-28]. Changes in tempera-
ture, for example, evoke symptoms in two inherited dis-

http://www.molecularpain.com/content/3/1/3

eases of sodium channels, with fever triggering cardiac
arrhythmia in Brugada syndrome [27,28] and cold exacer-
bating muscle weakness or myotonia in paramyotonia
congenita [29-31]. The V,, of activation of WT Navl.5
does not show temperature sensitivity [32], similar to our
findings for WT. The V, , of activation of WT' Nav1.4, how-
ever, has been reported to shift in a depolarizing direction
upon cooling [33]. One mutation of Nav1.4 causing par-
amyotonia congenita (1693T [34]) is located in the S4-S5
linker of domain II, only 10 amino acids N-terminal to
the amino acid substitution in L858F in Nav1.7 [7], and is
located at corresponding position to the IEM mutation
Nav1.7/1848T [15]. Patients with the paramyotonia [693T
Nav1.4 mutation, and those with the erythromelalgia
mutation Nav1.7, both show temperature sensitivity; but
while cooling of the IEM patients with Nav1.7/1848T
mutations relieves pain, it precipitates symptoms in para-
myotonia patients carrying the Nav1.4/1693T mutation. It
is interesting in this regard that Plassart-Schiess et al. [33]
showed that a reduction in temperature produced a simi-
lar effect on WT Navl.4 and Nav1.4/1693T. Taken
together, these data suggest that temperature effects on the
behavior of excitable cells may depend on the differential
sensitivity of voltage-gated sodium channels and other
ionic conductances, which are expressed in these cells.

Nav1.7 responds to slow depolarizations with ramp cur-
rents at potentials that are hyperpolarized relative to the
threshold of action potential firing, and thus appears to
amplify stimuli that, in themselves, do not reach the
threshold for the generation of action potentials [15].
L858F has been reported to significantly increase ramp
current [7]. We observed this larger ramp current of L858F
compared to WT channels at every temperature tested.
With cooling, the size of the ramp current increases for
both mutant and WT channels. Because the ramp current
appears to boost small subthreshold depolarizations [20],
we were surprised to see that the increase in ramp current
with cooling appeared in mutant as well as in WT chan-
nels. As we have noted previously [1] multiple factors,
including shift in the voltage-dependence of activation
can contribute to hyperexcitability of DRG neurons that
express mutant Nav1.7 channels. Thus, we speculate that
the depolarizing shift in voltage-dependence of activation
of L858F Nav1.7 channels at 16°C, which is predicted to
decrease DRG neuron excitability, outweighs the effect of
the increased ramp currents.

It should be noted that we have recently shown that the
presence of Nav1.8 is critical for rendering mutant Nav1.7
channels expressing DRG neurons hyperexcitable [18].
Nav1.7 appears to be responsible for the initiation of the
action potential, whereas the current which underlies the
upstroke of action potential is contributed mainly by
Nav1.8 [35,36]. The effects of cooling on Nav1.8 are not
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well understood at this time, but it is possible that altered
biophysical properties of Nav1.8, along with altered prop-
erties of Navl.7, contribute to alleviation of pain at
decreased temperatures in IEM.

Conclusion

Temperature shifts have a number of effects on the L858F
mutation of Nav1.7, which is known to cause the painful
disorder IEM in Chinese and Canadian families. When
WT and L858F Nav1.7 channels are compared, the voltage
gated sodium current density decreases upon cooling for
WT and L858F in the same way. Steady-state fast inactiva-
tion shifts in a similar manner for L858F and WT, and
ramp currents increase and deactivation slows upon cool-
ing for both L858F and WT. Importantly, steady-state acti-
vation of L858F channels is shifted to more depolarized
potentials with cooling, whereas the V; , of activation for
WT channels does not change. Thus, lowering the temper-
ature could bring the threshold of activation of the
mutant channels closer to that of WT. This effect is likely
to contribute to amelioration of pain by cooling of
affected extremities in patients with this erythromelalgia
mutation.

Methods

Plasmids and stable cell lines

HEK293 cells were stably transfected with either Nav1.7,
or with the L858F mutation as described previously [7].
Nav1.7g is a TTX resistant version of the human Nav1.7
construct that permits recording of Nav1l.7; currents in
isolation from any endogenous TTX-S currents [37,38] (in
this study, Nav1.7 (WT) refers to Nav1.7;). HEK293 cells
were grown under standard culture conditions (5% CO,,
37°C) in a 1:1 Dulbecco's modified Eagle's medium and
F-12, supplemented with 10% fetal bovine serum and
G418.

Electrophysiology

Whole-cell voltage-clamp recordings [39] of HEK293 cells
stably expressing the sodium channels Nav1.7 or the
L858F derivatives of Nav1.7 were performed with an EPC-
9 and EPC-10 amplifier (HEKA electronics, Lambrecht/
Pfalz, Germany) using fire polished 0.8-1.6 MQ elec-
trodes (World Precision Instruments, Inc, Sarasota, FL,
USA). The pipette solution contained (in mM): 140 CsF,
10 NaCl, 1 EGTA, and 10 HEPES; 310 mosmol (pH 7.3,
adjusted with CsOH) and the extracellular bath contained
(in mM): 140 NaCl, 3 KCI, 10 glucose, 10 HEPES, 1
MgCl,, 1 CaCl,; 315 mosmol (pH 7.4, adjusted with
NaOH for each temperature individually).

The pipette potential was adjusted to zero before seal for-
mation, and the voltages were not corrected for liquid
junction potential. Capacity transients were cancelled,
and series resistance was compensated by 80-90%. Leak-
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age current was subtracted digitally online using hyperpo-
larizing potentials applied after the test pulse (P/4
procedure). Currents were acquired using Pulse software
(HEKA electronics, Lambrecht/Pfalz, Germany), filtered at
10 Hz and 2.9 kHz in series and sampled at a rate of 20
kHz. For current density measurements, the maximal cur-
rents were divided by the cell capacitance, as read from the
amplifier. Temperature was controlled using a HCC-100A
temperature controller (Dagan, Minneapolis, Minnesota),
whereby the bath solution was exchanged with a DHL-A
Perfusion system (Shanghai, China).

Voltage protocols were carried out 3 min after establishing
cell access. Briefly, standard current-voltage (I-V) families
were obtained using 40 ms pulses from a holding poten-
tial of -120 mV to a range of potentials (-80 to +40 mV) in
5 mV steps with 5 s between pulses. The peak value at each
potential was plotted to form I-V curves. Activation curves
were obtained by calculating the conductance G at each
voltage V

1
G=———
V=V
with V,,, being the calculated reversal potential. Activation

curves were fitted with the following Boltzmann distribu-
tion equation:

G _ GNa,max
Na Vl /2 _Vm

14+e k

where Gy, is the voltage-dependent sodium conductance,
Gnamax is the maximal sodium conductance, V), is the
potential at which activation is half-maximal, V, is the
membrane potential, and k is the slope factor. Inactiva-
tion kinetics were assessed by fitting the decay of the cur-
rent traces with a single exponential fit using PulseFit
software (HEKA electronics), revealing the inactivation
time constant T. Ramp currents were elicited by slowly
depolarizing voltage ramps, ranging from -120 mV to +20
mV at a rate of 0.23 mV/ms. Ramp current values were
expressed as percent of transient peak current obtained
during initial I-V families, 3 min after breaking into the
cell.

Protocols for assessing steady-state fast inactivation con-
sisted of a series of prepulses ranging from -150 mV to 0
mV lasting 500 ms from the holding potential of -120 mV,
followed by a 40 ms depolarization to -20 mV to assess
the non-inactivated transient current. The normalized
curves were fitted using a Boltzmann distribution equa-
tion:
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Ing 1
INa,maX M
l+e k
where I, ., is the peak sodium current elicited after the

most hyperpolarized prepulse, V,, is the preconditioning
pulse potential, Vy, is the half-maximal sodium current,
and k is the slope factor.

The rate of deactivation was measured using a short (0.5
ms) depolarizing pulse to -20 mV followed by a 100 ms
repolarizing pulse to potentials ranging from -40 mV to -
100 mV. Decaying current was then fitted with a single
exponential function using PulseFit software (HEKA elec-
tronics).

Q,, values were calculated as the ratio of the value of
parameter X at temperatures T; and T,:

Statistical analysis was carried out using SPSS software
(SPSS Inc, Chicago, Illinois, USA) performing One-Way
ANOVA, and significance at a level of o < 0.05 for multi-
ple comparisons was tested using Tukey HSD post hoc
analyses. All data are presented as mean + SEM.
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