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Abstract

Nociception is essential for survival whereas pathological pain is mal-
adaptive and often unresponsive to pharmacotherapy. Voltage-gated
sodium channels, Nav1.1–Nav1.9, are essential for generation and con-
duction of electrical impulses in excitable cells. Human and animal
studies have identified several channels as pivotal for signal transmis-
sion along the pain axis, including Nav1.3, Nav1.7, Nav1.8, and Nav1.9,
with the latter three preferentially expressed in peripheral sensory neu-
rons and Nav1.3 being upregulated along pain-signaling pathways after
nervous system injuries. Nav1.7 is of special interest because it has been
linked to a spectrum of inherited human pain disorders. Here we review
the contribution of these sodium channel isoforms to pain.
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Nociceptors: pain- or
damage-sensing
neurons

Inherited sodium
channelopathies:
pathologies linked to
mutations in sodium
channels

Nav1: voltage-gated
sodium channel
subfamily 1

TTX: tetrodotoxin

DRG: dorsal root
ganglion
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INTRODUCTION

Nociception is the physiological system for the
perception of pain, and thus it contributes to
survival because it warns of impending harm.
Signaling along the pain axis from peripheral
receptors to higher-order brain centers opti-
mally discriminates potentially harmful from
innocuous stimuli. If pain is inappropriately
magnified or prolonged, or occurs in the
absence of appropriate external stimuli, it is
pathological. The responses of nociceptors
to stimuli are encoded by action potentials,
whose genesis and propagation are dependent
on voltage-gated sodium channels, and it is
thus not surprising that aberrant expression
patterns of channels and inherited sodium

channelopathies have been linked to neu-
ropathic and inflammatory pain. Here we
review current knowledge of sodium channels
that are preferentially expressed along the
pain-signaling pathways.

Nine pore-forming sodium channel α-
subunits (Nav1.1–Nav1.9, referred to as chan-
nels hereinafter), encoded by the SCN1A-
SCN5A and SCN8A-SCN11A genes, have been
identified in mammals, and their expression
is spatially and temporally regulated (Catterall
et al. 2005). These channels are large polypep-
tides (1700–2000 amino acids) that fold into
four domains (DI–DIV), each domain includ-
ing six transmembrane segments, linked by
three loops (Catterall 2000). Different chan-
nels gate with different kinetics and voltage-
dependent properties (Catterall et al. 2005),
with six channels sensitive to block by nanomo-
lar concentrations of tetrodotoxin (TTX-S),
and three channels resistant to this blocker
(TTX-R) (Table 1) (Catterall et al. 2005).
Because channel properties are cell-type de-
pendent and sodium channel properties can
be modulated in a cell type–specific manner
(for example, see Cummins et al. 2001, Choi
et al. 2007), these channels should, when-
ever practicable, be studied within neurons in
which they are normally expressed. Methods
to study sodium channels within peripheral
sensory neurons (Dib-Hajj et al. 2009b) have
yielded important information about the con-
tribution of individual sodium channels to elec-
trogenesis within these neurons (Rush et al.
2006).

SODIUM CHANNELS
IN DRG NEURONS

Dorsal root ganglia (DRG) house neurons of
diverse sensory modalities that require precise
electrogenic tuning. DRG neurons can express
up to five sodium channels (Black et al. 1996,
Dib-Hajj et al. 1998b), more than in any other
neuronal cell type. Adult DRG neurons can
express the TTX-S channels Nav1.1, Nav1.6,
and Nav1.7, and the TTX-R channels Nav1.8
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Table 1 Sodium channels preferentially expressed in peripheral neurons

Channel Expression in peripheral sensory neurons TTX sensitivity Physiological attributes
Nav1.3 Normally expressed during embryogenesis, but

continues to be expressed in sympathetic
neurons in adult

Upregulated in DRG neurons after injury

S
Kd = 1.8–4nM

Rapid repriming
Produces large ramp current
Produces persistent current
Amplifies small depolarizing inputs

Nav1.7 Preferentially expressed in DRG and
sympathetic neurons

S
Kd = 4.3–25nM

Slow repriming
Produces large ramp current
Amplifies small depolarizing inputs

Nav1.8 Selectively expressed in DRG neurons R
Kd = 40–60 μM

Depolarized voltage-dependence for activation
and inactivation.

Rapid repriming
Produces majority of current during AP upstroke
Supports repetitive firing in response to
depolarizing input

Different slow-inactivation properties in IB4+ and
IB4− DRG neurons

Nav1.9 Selectively expressed in small-diameter
nonpeptidergic DRG neurons

R
Kd = 40 μM

Hyperpolarized voltage-dependency of activation
Slow activation kinetics
Ultra slow inactivation
Broad overlap between activation and
fast-inactivation

Amplifies and prolongs small depolarizations close
to resting membrane potential

Depolarizes resting potential of DRG neurons

and Nav1.9 (as well as Nav1.5 at low levels)
(Figure 1). Nav1.1 and Nav1.6 expression is
common to central nervous system (CNS)
and peripheral nervous system (PNS) neurons,
whereas Nav1.7, Nav1.8, and Nav1.9 are spe-
cific to PNS neurons.

Nav1.3 is the major channel in embryonic
neurons; in rodents, it is significantly reduced
in neonates and is undetectable in adult DRG
neurons (Waxman et al. 1994) and is at low lev-
els in adult brain (Beckh et al. 1989). However,
levels of Nav1.3, comparable to other channels,
are present in adult sympathetic ganglion
neurons (Rush et al. 2006). Nav1.3 channel
expression is upregulated in axotomized rodent
DRG neurons (Waxman et al. 1994, Dib-Hajj
et al. 1996), as is discussed in detail below.
The recent discovery of a mutation in Nav1.3
linked to childhood epilepsy (Holland et al.
2008), however, is consistent with higher
Nav1.3 expression levels in human brains after

birth (Whitaker et al. 2001), and suggests that
Nav1.3 may play a larger role in human than
in rodent nociception.

Three channels, Nav1.7, Nav1.8, and
Nav1.9, appear to have evolved relatively re-
cently because their sequences have not been
reported from nonmammalian species thus far.
Nav1.7 is expressed in sensory and sympa-
thetic (Toledo-Aral et al. 1997), and myenteric
(Sage et al. 2007) neurons, whereas Nav1.9 is
expressed in sensory and myenteric neurons
(Dib-Hajj et al. 1998b, Rugiero et al. 2003),
and Nav1.8 only in sensory neurons (Akopian
et al. 1996, Rugiero et al. 2003). Nav1.7, Nav1.8,
and Nav1.9, produced by functionally iden-
tified nociceptive neurons (Fang et al. 2002;
Djouhri et al. 2003a,b), may have evolved a
specialized sensory role in mammals, including
pain, and are attractive targets for the devel-
opment of new pharmaceutical agents to treat
pain.
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100 um
NFNFNF
PeripherinPeripherinPeripherin

Nav1.1Nav1.1 Nav1.2Nav1.2 Nav1.3Nav1.3 Nav1.5Nav1.5

Nav1.6Nav1.6 Nav1.7Nav1.7 Nav1.8Nav1.8 Nav1.9Nav1.9

Nav1.1 Nav1.2 Nav1.3 Nav1.5

Nav1.6 Nav1.7 Nav1.8 Nav1.9

Figure 1
Five sodium channels are expressed in adult DRG neurons. Sodium channel isoforms Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9
(red ) are colocalized in DRG neurons expressing peripherin ( green), a specific small neuron marker, and neurofilament (blue), a marker
of medium and large neurons. Nav1.8 is expressed preferentially in small and medium neurons, whereas Nav1.9 is expressed exclusively
in small neurons. Nav1.7 is highly expressed in small neurons, but is also present in some large neurons. Nav1.6 generally has
expression in all size classes of neurons, whereas the limited Nav1.1 expression is largely confined to large neurons. Colocalization of
sodium channels with peripherin is depicted in yellow and with neurofilament in magenta.

Central sensitization:
enhanced excitability
of CNS neurons
typically triggered by
hyperexcitable
peripheral nociceptors
leading to an
exaggerated response
to a normal stimulus

NORMAL AND PATHOLOGICAL
ELECTROGENESIS IN
NOCICEPTORS

Neuropathic and inflammatory pain signals
originate predominantly in peripheral sensory
terminals, but are maintained by central sen-
sitization. Sodium channel mutations or dys-
regulated expression within peripheral pri-
mary afferents and within CNS neurons along
the pain-signaling axis have been shown to
contribute to the establishment and mainte-
nance of pain states (Waxman & Hains 2006;
Dib-Hajj et al. 2007, 2009a). This pivotal role
of sodium channels in pain has been empirically
confirmed by symptomatic relief in patients
treated with sodium channel blockers (Rice &
Hill 2006, Dworkin et al. 2007), but the nonspe-
cific nature and side effects of existing blockers
(Sindrup & Jensen 2007, Gerner & Strichartz
2008) have limited their clinical utility,

providing an impetus for the search for isoform-
specific sodium channel blockers.

SODIUM CHANNEL
DYSREGULATION IN
EXPERIMENTAL MODELS
OF PAIN

Several animal models of nerve injury and in-
flammation have shown transcriptional regula-
tion of sodium channel genes in DRG neurons,
with transcription of some channels “turned
off” and others “turned on” (Waxman 2001).
For example, Nav1.3 channel expression, which
is undetected in adult rat DRG neurons, is
upregulated in axotomized neurons (Waxman
et al. 1994, Dib-Hajj et al. 1996, Black et al.
1999), whereas Nav1.8 and Nav1.9, which are
abundant in small rat DRG neurons, are down-
regulated in axotomized neurons (Dib-Hajj

328 Dib-Hajj et al.
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Neuromas: a
collection of de- and
dysmyelinated axon
sprouts and connective
tissue that results from
abortive regeneration
of transected axons

SCI: spinal cord
injury

NGF: neurotrophic
growth factor

GDNF: glial-derived
neurotrophic factor

Neuropathic pain:
pain resulting from
lesions or diseases of
the somatosensory
system

et al. 1998b, Sleeper et al. 2000, Decosterd et al.
2002). Importantly, two studies have reported
a reduction of Nav1.7, Nav1.8, and Nav1.9
within injured human DRG neurons (Coward
et al. 2000, 2001), but other studies have
shown that Nav1.7 and Nav1.8 can accumulate
within injured axons in painful human neuro-
mas (Kretschmer et al. 2002, Bird et al. 2007,
Black et al. 2008). The dysregulated expres-
sion of sodium channels is not a generalized
injury-induced nonspecific response or a reca-
pitulation of a developmental expression pro-
gram, since transection of the centrally project-
ing axons of DRG neurons by dorsal rhizotomy
does not alter Nav1.3, Nav1.8, or Nav1.9 ex-
pression (Black et al. 1999, Sleeper et al. 2000)
and severing peripheral axons does not lead to
an upregulation of Nav1.2, which is normally
expressed during embryogenesis within DRG
neurons (Waxman et al. 1994).

CONTRIBUTION OF
INDIVIDUAL SODIUM
CHANNELS TO ACQUIRED PAIN

Nav1.3

Peripheral nerve injury triggers upregulated
Nav1.3 expression in DRG (Waxman et al.
1994, Dib-Hajj et al. 1996, Black et al. 1999,
Kim et al. 2001, Lindia et al. 2005), dorsal
horn (Hains et al. 2004), and thalamic (Zhao
et al. 2006) neurons. Similarly, spinal cord
injury (SCI) leads to Nav1.3 expression within
dorsal horn and thalamic neurons (Hains
et al. 2003, 2005; Lampert et al. 2006b).
Injury-induced Nav1.3 upregulation within
DRG neurons is reversed by administration
of neurotrophic growth factor (NGF) and
glial-derived neurotrophic factor (GDNF)
(Boucher et al. 2000, Leffler et al. 2002), sug-
gesting that loss of target-derived neurotrophic
factors derepresses transcriptional silencing of
Nav1.3. The trigger for injury-induced Nav1.3
upregulation within second- and third-order
neurons is not yet understood, but may also
involve changes regulated by alterations in
neurotrophic factor levels.

Nav1.3 channel activation produces a fast-
inactivating, rapid-repriming (recovery from
inactivation) TTX-S current, with slow closed-
state inactivation that yields a substantial ramp
current in response to small, slow depolar-
izations, and these properties are modulated
in a cell type–dependent manner (Cummins
et al. 2001). Contactin/F3, a cell-adhesion
molecule that translocates to the cell surface
in an activity-dependent manner (Pierre et al.
2001), interacts with Nav1.3 and increases its
current density (Shah et al. 2004). Similari-
ties in the biophysical properties of Nav1.3
and the TTX-S current within injured DRG
neurons (Cummins & Waxman 1997) impli-
cate Nav1.3 in injury-induced neuron hyper-
excitability. Nav1.3 has also been linked to an
increase in persistent current within dorsal horn
neurons following SCI (Lampert et al. 2006b).

Ectopic firing within neuromas is now well
established (Devor 2006). Nav1.3 channels have
been localized within distal axon tips in exper-
imental neuromas in rats (Black et al. 1999)
and in human neuromas (Black et al. 2008).
Contactin, which is upregulated following ax-
otomy, coaccumulates with Nav1.3 in experi-
mental neuromas (Shah et al. 2004), suggesting
a positive feedback loop in which ectopic ac-
tivity enhances trafficking of contactin to the
plasma membrane, leading to increased Nav1.3
expression at the axonal tips, and exacerbation
of neuropathic pain (Shah et al. 2004). The at-
tenuation of ectopic firing (Liu et al. 2001) and
amelioration of pain behavior (Lyu et al. 2000)
by 20nM TTX is consistent with a contribution
of Nav1.3 channels and other TTX-S channels
to ectopic discharges within neuromas.

In support of a link between upregulated
expression of Nav1.3 and hyperexcitability of
primary afferants and central neurons in the
ascending pain pathway, enlargement of their
peripheral receptive fields, and neuropathic
pain, Hains et al. (2003, 2004) observed that
intrathecal treatment with antisense oligonu-
cleotide (ODN) targeting Nav1.3 reduces lev-
els of Nav1.3 within dorsal horn neurons and
ameliorates pain after sciatic nerve and spinal
cord injury (Table 2). However, Lindia et al.
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Table 2 Results of knock-down and knock-out studies

Channel Knock-down Knock-out
Nav1.3 Attenuation of pain with antisense ODN after SCI and

CCI in rat (Hains et al. 2003, 2004)
No effect on pain behavior with antisense ODN in rat

(Lindia et al. 2005)

Normal neuropathic pain behavior (Nassar et al. 2005)

Nav1.7 Attenuation of pain with HSV-delivered antisense
construct in mice (Yeomans et al. 2005)

Abrogated inflammatory response and thermal
hyperalgesia (Nassar et al. 2004)

Normal neuropathic pain behavior (Nassar et al. 2006)
Nav1.8 Attenuation of pain with antisense ODN after CCI in rat

(Lai et al. 2002, Porreca et al. 1999, Joshi et al. 2006,
Gold et al. 2003, Yoshimura et al. 2001)

Impaired thermal hyperalgesia and inflammatory
(Akopian et al. 1999, Laird et al. 2002) and cold pain
(Zimmermann et al. 2007)

Attenuation of pain following lentivirus-delivered siRNA
(Dong et al. 2007)

Nav1.9 No ODN effect on neuropathic pain in rat (Porreca et al.
1999)

Impaired inflammatory pain (Priest et al. 2005, Amaya
et al. 2006), but see (Hillsley et al. 2006)

Generator
potentials: passively
transmitted, typically
small stimulus-evoked
currents that
depolarize cell
membrane and, once it
reaches a threshold,
trigger an all-or-none
action potential at the
first trigger zone of the
neuron

MAPK: mitogen-
activated protein
kinase

(2005) did not observe amelioration of neuro-
pathic pain after peripheral nerve injury follow-
ing knock-down of Nav1.3 by different ODNs
(Table 2). Additionally, global or DRG-
specific knock-out of Nav1.3 does not impair
pain behavior after nerve injury (Nassar et al.
2006), a result suggesting that either this chan-
nel does not contribute to injured neuron hy-
perexcitability, that its function is redundant,
or that compensatory changes obscure the ef-
fect of losing this channel. Despite clear upreg-
ulation of Nav1.3 expression in DRG, dorsal
horn, and thalamic neurons after axonal injury,
sodium channels other than Nav1.3 may medi-
ate injury-induced hyperexcitability.

Nav1.7

Nav1.7 is preferentially expressed in DRG and
sympathetic ganglion neurons (Sangameswaran
et al. 1997, Toledo-Aral et al. 1997, Djouhri
et al. 2003b). Nav1.7 produces a fast-activating
and -inactivating, slow-repriming, TTX-S cur-
rent (Klugbauer et al. 1995). Slow closed-state
inactivation of Nav1.7 yields a substantial ramp
current in response to small, slow depolariza-
tions (Cummins et al. 1998, Herzog et al. 2003).
Based on its biophysical properties, Nav1.7
is poised to amplify generator potentials in
neurons expressing it, including nociceptors,
and to act as a threshold channel for firing

action potentials (Rush et al. 2007), thereby
setting the gain in pain-signaling neurons
(Waxman 2006, Dib-Hajj et al. 2007). The
switch from slow-repriming to rapid-repriming
TTX-S currents in injured DRG neurons
(Cummins & Waxman 1997) is consistent with
reduced Nav1.7 mRNA levels following axo-
tomy (Kim et al. 2002). However, the incom-
plete loss of Nav1.7 channels in injured DRG
neurons suggests that other factors influence
repriming of residual TTX-S channels in these
neurons, including modulation of Nav1.6, the
other TTX-S channel within small DRG neu-
rons (Black et al. 2002).

In agreement with animal studies, reduced
levels of Nav1.7 in DRG neurons have been
reported following peripheral nerve injury in
humans (Coward et al. 2000, 2001). However,
recent studies have demonstrated accumula-
tion of Nav1.7 within axons in painful human
neuromas, including those in amputees with
phantom limb pain (Kretschmer et al. 2002,
Bird et al. 2007, Black et al. 2008). Activated
p38 and ERK1/2 MAPK (mitogen-activated
protein kinase) also accumulate within axons
in human neuromas (Black et al. 2008) raising
the possibility that modulation of Nav1.7 by
activated MAPKs (Stamboulian et al. 2010)
may contribute to ectopic firing at neuromas.

Inflammation causes an upregulation of
Nav1.7 and TTX-S current in DRG neurons

330 Dib-Hajj et al.

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
10

.3
3:

32
5-

34
7.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 Y
al

e 
U

ni
ve

rs
ity

 S
T

E
R

L
IN

G
 C

H
E

M
IS

T
R

Y
 L

IB
R

A
R

Y
 o

n 
07

/0
7/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



NE33CH15-Waxman ARI 14 May 2010 18:8

that project to the inflamed area (Black et al.
2004, Gould et al. 2004, Strickland et al. 2008).
Inflammatory mediators, e.g., NGF, upreg-
ulate Nav1.7 expression (Toledo-Aral et al.
1997, Gould et al. 2000), and increased lev-
els of Nav1.7 transcripts and phosphorylated
Nav1.7 protein have been reported in a rat
model of painful diabetic neuropathy (Hong
et al. 2004, Chattopadhyay et al. 2008). Acti-
vated p38 MAPK and PKC, which are signal
transducers of inflammatory mediators, have
been reported to regulate the expression of
Nav1.7 in diabetic neuropathy (Chattopadhyay
et al. 2008). Peptide toxins that preferentially
block Nav1.7 have been identified (Middleton
et al. 2002, Xiao et al. 2008); however, they
do not ameliorate pain in nerve-injury animal
models, perhaps owing to impaired accessibility
(Schmalhofer et al. 2008). In contrast, an im-
portant role for Nav1.7 in inflammatory pain
is supported by the observations that Nav1.7
knock-down in primary afferents ameliorates
thermal hyperalgesia in mice following com-
plete Freund’s adjuvant injection into the paw
(Yeomans et al. 2005).

A role for Nav1.7 in inflammatory pain is
confirmed in knock-out studies. Global knock-
out of Nav1.7 was neonatal lethal, but a condi-
tional Nav1.7 knock-out in Nav1.8-expressing
mouse DRG neurons abrogates inflammation-
induced pain (Nassar et al. 2004). The loss
of Nav1.7 in Nav1.8-expressing DRG neurons
did not impair neuropathic pain. The presence
of Nav1.7 in Nav1.8-negative DRG neurons
may perhaps contribute to neuropathic pain-
signaling, although this is a very limited popula-
tion of cells ( J.A. Black and S.G. Waxman, un-
published observations). Alternatively, Nav1.7
may be dispensable for neuropathic pain sig-
naling in animal models, or the animal models
are not suitable to uncover the role of this chan-
nel (see discussion below on the limitations of
animal models in pain testing).

In the aggregate, the preferential expression
of Nav1.7 in nociceptors, the functional role
of Nav1.7 in regulating neuronal excitability,
and the results of knock-down studies support a
critical role for Nav1.7 in pain signaling, which

is further supported by identification of Nav1.7
mutations in human hereditary pain disorders
(see below).

Nav1.8

Nav1.8 is a sensory neuron-specific chan-
nel that is preferentially expressed in DRG
and trigeminal ganglia (Akopian et al. 1996,
Sangameswaran et al. 1996), most of which
are nociceptive (Djouhri et al. 2003a), and
is also present along peripheral axons shafts
(Rush et al. 2005) and free nerve termi-
nals in skin (Zhao et al. 2008) and cornea
(Black & Waxman 2002). Nav1.8 produces
a slow-inactivating, rapid-repriming TTX-R
current with depolarized activation and in-
activation voltage-dependency (Akopian et al.
1996, 1999). Activation and inactivation prop-
erties of the slow-inactivating TTX-R cur-
rent are conserved in human DRG neurons
(Dib-Hajj et al. 1999). Nav1.8 trafficking to
the cell membrane is enhanced by annexin II
light-chain (Okuse et al. 2002), and by con-
tactin in IB4+ but not in IB4− DRG neu-
rons (Rush et al. 2005). In contrast, SCLT1
(Sodium-Channel-CLaThrin-linker 1; previ-
ously known as CAP1A) internalizes Nav1.8 in
a clathrin-dependent manner (Liu et al. 2005),
and Nedd4-2 ubiquitin ligase, but not Nedd4,
induces a reduction in Nav1.8 current density
(Fotia et al. 2004).

Nav1.8 contributes most of the sodium cur-
rent underlying the action potential upstroke
in neurons that expresses it (Renganathan et al.
2001, Blair & Bean 2002). Depolarized inac-
tivation and rapid repriming may explain why
Nav1.8 accounts for most of the current in later
spikes in a train (Blair & Bean 2003). Nav1.8
slow-inactivation is differentially modulated in
peptidergic (IB4−) and nonpeptidergic (IB4+)
nociceptors (Choi et al. 2007), possibly con-
tributing to different degrees of adaptation of
action potential firing in response to sustained
stimulation (Blair & Bean 2003, Tripathi et al.
2006, Choi et al. 2007).

The biophysical properties of Nav1.8, its
critical role in repetitive firing, and its presence
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in free nerve endings, where pain-signaling
is initiated, suggest that Nav1.8 can signifi-
cantly influence nociceptor excitability, thus
contributing to pain. The role of Nav1.8 in
neuropathic pain is, however, not well under-
stood. Axonal transection in the sciatic nerve
causes a downregulation of Nav1.8 mRNA, pro-
tein and current in injured neurons (Dib-Hajj
et al. 1996, Cummins & Waxman 1997, Sleeper
et al. 2000, Decosterd et al. 2002). However,
increased Nav1.8 levels have been reported in
spared axons and neuronal cell bodies in neu-
ropathic pain models (Gold et al. 2003, Zhang
et al. 2004), possibly in response to inflamma-
tory cytokines produced during Wallerian de-
generation. Nav1.8-mediated hyperexcitability
of uninjured neurons provides a plausible expla-
nation for a contribution of Nav1.8 to neuro-
pathic pain in animal models. Human patients
with chronic neuropathic pain show increased
Nav1.8 channel expression proximal to injury
sites (Coward et al. 2000, Yiangou et al. 2000,
Black et al. 2008). A role for Nav1.8 in neuro-
pathic pain is also suggested by studies of knock-
down (Lai et al. 2002, Joshi et al. 2006, Dong
et al. 2007), toxin-inhibition (Bulaj et al. 2006,
Ekberg et al. 2006), and the small molecule in-
hibitor, A-803467 ( Jarvis et al. 2007) (Table 2).

The contribution of Nav1.8 in inflamma-
tory pain is well documented in animal studies.
Nav1.8 levels in DRG neurons are increased
following carrageenan injection into rat hind-
paw (Tanaka et al. 1998, Black et al. 2004),
and following treatment of cultured DRG neu-
rons with inflammatory mediators (Gold et al.
1996, Jin & Gereau 2006, Binshtok et al. 2008).
Injection of complete Freund’s adjuvant into
rat hindpaw does not increase Nav1.8 levels in
DRG neurons (Okuse et al. 1997), but does
increase Nav1.8 translocation to myelinated
and unmyelinated axons in the sciatic nerve
(Coggeshall et al. 2004). Increased Nav1.8 cur-
rent density was also reported in an animal
model of colitis (Beyak et al. 2004). Further evi-
dence for an important role of Nav1.8 in inflam-
matory pain is provided by knock-down studies
( Joshi et al. 2006) and inhibition by A-803467
( Jarvis et al. 2007).

Pro-inflammatory mediators, released by
damaged tissue and infiltrating immune cells
(Scholz & Woolf 2007), have been shown to
modulate sodium currents through activation
of protein kinases ( Jin & Gereau 2006, Hucho
& Levine 2007, Binshtok et al. 2008). NGF,
an inflammatory cytokine, upregulates Nav1.8
within DRG neurons in vivo (Dib-Hajj et al.
1998a, Leffler et al. 2002) and in vitro (Fjell
et al. 1999b, Cummins et al. 2000); ceramide, a
second messenger for NGF, increases Nav1.8
current density (Zhang et al. 2002). PGE2
and other inflammatory mediators act through
PKA and PKC kinases (England et al. 1996;
Gold et al. 1998, 2002; Zhou et al. 2002;
Hucho & Levine 2007) to increase Nav1.8
current density and produce a hyperpolar-
izing shift in activation voltage-dependency,
possibly via PKA/PKC phosphorylation of
serine residues within L1 (Fitzgerald et al.
1999, Vijayaragavan et al. 2004). Patch-clamp
studies of DRG neurons from diabetic rats
show increased slow-inactivating TTX-R
current amplitude and hyperpolarizing shifts
of activation and steady-state inactivation,
consistent with increased serine/threonine
phosphorylation of Nav1.8 (Hong et al. 2004).

In contrast, treatment of DRG neurons
with proinflammatory cytokines TNF-α ( Jin
& Gereau 2006) and IL-1β (Binshtok et al.
2008) increases Nav1.8 current density without
altering its gating properties, via a p38 MAPK-
mediated mechanism. The p38-mediated in-
crease in Nav1.8 current density results from
phosphorylation of two serine residues within
Nav1.8-L1 that are distinct from the PKA/PKC
phosphorylation sites (Hudmon et al. 2008).
Similarly, inflammation of visceral organs
causes an increase in Nav1.8 current density
without a hyperpolarizing shift in activation
voltage-dependency (Yoshimura et al. 2001,
Bielefeldt et al. 2002). Thus, multiple inflam-
matory modalities may differentially regulate
the Nav1.8 current.

Studies in Nav1.8 knock-out mice have con-
firmed a role of Nav1.8 in somatic inflamma-
tory (Akopian et al. 1999, Kerr et al. 2001) and
cold (Zimmermann et al. 2007) pain. Nav1.8 is
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expressed in all DRG neurons that innervate the
colon (Gold et al. 2002), and Nav1.8 knock-out
mice show deficits in visceral inflammatory pain
(Laird et al. 2002, Hillsley et al. 2006). How-
ever, a role for Nav1.8 in neuropathic pain was
not observed in the Nav1.8 knock-out mouse
(Akopian et al. 1999) despite a report of 20-
fold reduction of ectopic discharges in neuro-
mas in these mice (Roza et al. 2003). Addition-
ally, the double Nav1.7/Nav1.8 deletion did not
attenuate neuropathic pain response in mice
(Nassar et al. 2005). Increased Nav1.7 expres-
sion in DRG from Nav1.8 knock-out mice
(Akopian et al. 1999) may contribute to, but
does not totally explain, their normal neuro-
pathic pain behavior, especially because the
absence of Nav1.8 has been shown to atten-
uate the excitability of neurons expressing a
gain-of-function Nav1.7 mutation (Rush et al.
2006).

Nav1.9

Nav1.9 is preferentially expressed in small-
diameter, nonpeptidergic DRG neurons
(Dib-Hajj et al. 1998b, 2002), which are largely
nociceptors (Fang et al. 2002, 2006), and in
trigeminal ganglion and myenteric neurons
(Dib-Hajj et al. 2002, Rugiero et al. 2003), and
has been found within free nerve terminals
in skin and cornea (Black & Waxman 2002,
Dib-Hajj et al. 2002). Nav1.9 expression is
regulated by the trophic factor GDNF but
not NGF (Fjell et al. 1999a, Leffler et al.
2002). Nav1.9 current density is significantly
reduced in IB4+ neurons from contactin-null
mice, suggesting a role for contactin in Nav1.9
trafficking (Rush et al. 2005). Thus, the expres-
sion of Nav1.9 appears to be tightly regulated
within DRG neurons, and may contribute to
the functional specialization (Stucky & Lewin
1999, Braz et al. 2005) of IB4+ and IB4−

neurons.
Nav1.9 current is TTX-R, with a hyperpo-

larized voltage-dependency of activation close
to the resting membrane potential of neurons
(−60 to −70 mV) and an ultraslow inactivation
leading to a persistent current (Cummins

et al. 1999). Glycosylation of Nav1.9 is de-
velopmentally regulated and hyperpolarizes
inactivation voltage-dependency (Tyrrell et al.
2001). Recombinant Nav1.9 produces a small
current with similar properties in HEK 293
cell line (Dib-Hajj et al. 2002). The persistent
TTX-R current is missing from DRG neurons
of Nav1.9 knock-out mice (Priest et al. 2005,
Amaya et al. 2006, Ostman et al. 2007), and
can be restored by expression of recombi-
nant Nav1.9 channels (Ostman et al. 2007),
unequivocally confirming the identity of the
current. Importantly, native human Nav1.9
current activates at ∼−80 mV, 10–20 mV more
negative than Nav1.9 current in rodent DRG
neurons, likely owing to species-specific differ-
ences in primary protein sequence (Dib-Hajj
et al. 1999). The ultraslow kinetics of Nav1.9
suggest that it does not contribute to the action
potential upstroke, but that it may enhance
and prolong the response to subthreshold
depolarizations (Cummins et al. 1999, Herzog
et al. 2001), and lower the threshold for single
action potentials and repetitive firing (Baker
et al. 2003). Based on computer simulations
(Herzog et al. 2001) and empirical evidence
(Baker et al. 2003, Ostman et al. 2007, Copel
et al. 2009), Nav1.9 appears to act as a threshold
channel.

Nav1.9 is sensitive to intracellular fluo-
ride (Coste et al. 2004), suggesting modulation
by kinases/phosphatases. Additionally, direct
activation of G proteins in DRG neurons in-
creases Nav1.9 current with a subsequent re-
duction in action potential threshold and an in-
crease in spontaneous firing (Baker et al. 2003,
Ostman et al. 2007). Recently, Nav1.9 current
density has been shown to increase because of
a rapid, transient hyperpolarizing shift of acti-
vation and inactivation following neurokinin 3
receptor activation in enteric neurons (which is
also mimicked by activation of PKC), reducing
the threshold for action potential generation of
these neurons (Copel et al. 2009).

Experimental evidence supports a role
for Nav1.9 in inflammatory and diabetic
neuropathy pain. Expression of Nav1.9 has
been shown to increase in DRG neurons
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Haploinsufficiency:
when one functional
copy of a gene is not
enough to prevent
deficit

IEM: inherited
erythromelalgia, also
known as primary
erythermalgia (PE)

PEPD: paroxysmal
extreme pain disorder,
also known as familial
rectal pain

CIP: congenital
insensitivity to pain

innervating inflamed rat hindpaw (Tate et al.
1998). PGE2, acting via G protein–coupled
receptors, increases Nav1.9 current density in
DRG neurons in vitro, accompanied by hyper-
polarized shifts of activation and inactivation
(Rush & Waxman 2004), while treatment with
IL-1β increases persistent TTX-R in a p38
MAPK-dependent manner (Binshtok et al.
2008). Although expression levels of Nav1.9 do
not appear to be altered in small DRG neurons
from diabetic rats, increased Nav1.9 levels in
large-diameter neurons suggest a contribution
to painful diabetic neuropathy (Craner et al.
2002). In contrast, Nav1.9 mRNA and protein
levels and current density are downregulated
in several animal models of neuropathic pain
(Cummins & Waxman 1997, Dib-Hajj et al.
1998b, Cummins et al. 2000, Sleeper et al.
2000, Decosterd et al. 2002). An early study
using Nav1.9 antisense ODN treatment did
not report amelioration of neuropathic pain
(Porreca et al. 1999). However, activation of
neurokinin 3 receptor causes potentiation of
Nav1.9 leading to increased excitability of
enteric neurons (Copel et al. 2009), which
suggests an effect on nociceptive DRG neurons
that coexpress neurokinin 3 receptor and
Nav1.9.

Nav1.9 knock-out mice show impaired so-
matic inflammatory pain behavior (Priest et al.
2005, Amaya et al. 2006), but normal neu-
ropathic pain (Amaya et al. 2006). Mice that
are heterozygous for the Nav1.9 null-allele
manifested impaired inflammatory response
(Priest et al. 2005), suggesting haploinsuf-
ficiency; however, similar findings have not
been reported in another study with a dif-
ferent Nav1.9 knock-out mouse (Amaya et al.
2006). Nav1.9 knock-out mice did not manifest
gastrointestinal or apparent nutritional deficits
(Priest et al. 2005, Amaya et al. 2006). An-
other independently produced Nav1.9 knock-
out mouse strain displayed no deficits in vis-
ceral inflammatory pain (Hillsley et al. 2006),
suggesting a differential role of this channel in
somatic versus visceral pain.

Altogether, convincing evidence indicates a
role for Nav1.9 in inflammatory and diabetic

neuropathy pain, although a role in neuropathic
pain is less clear.

SODIUM CHANNELS IN
HEREDITARY HUMAN PAIN

A compelling case can be made for a direct in-
volvement of a target by establishing a mono-
genic link of mutations to disease. The re-
cent discovery of a genetic link of Nav1.7 to
pain disorders in humans solidified the status
of Nav1.7 as central to pain-signaling. Domi-
nant gain-of-function mutations in SCN9A, the
gene that encodes sodium channel Nav1.7, have
been linked to two severe pain syndromes, in-
herited erythromelalgia (IEM) and paroxysmal
extreme pain disorder (PEPD), and recessive
loss-of-function mutations have been linked
to congenital insensitivity to pain (CIP) (Dib-
Hajj et al. 2007, Drenth & Waxman 2007).
Electrophysiological characterization of these
mutations has elucidated the molecular basis
for altered excitability of DRG neurons that
express these mutant channels, establishing a
mechanistic link to human pain.

Pain in IEM is localized to the distal
extremities (feet and hands) and has been
reported as early as 1-year-old (early onset),
in the second decade (delayed-onset), and
in adults (adult-onset) (Dib-Hajj et al. 2007,
Drenth & Waxman 2007). Mutations in Nav1.7
have been identified in patients with early- and
delayed-onset IEM (Table 3), but the molecu-
lar basis of adult-onset IEM remains unknown.
Treatment for IEM, even with sodium channel
blockers, e.g., lidocaine or mexiletine, is largely
ineffective (Dib-Hajj et al. 2007, Drenth
& Waxman 2007), and in one case may be
the result of reduced affinity of the mutant
channel to these drugs (Sheets et al. 2007).
Recently, however, two cases of IEM were
reported with favorable pain management with
sodium channel blockers: V872G, controlled
by lidocaine/mexiletine (Choi et al. 2009), and
V400M, controlled by carbamazepine (Fischer
et al. 2009). The V872G mutation shows
enhanced use-dependent block by lidocaine
(Choi et al. 2009), whereas V400M displays a
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depolarizing shift of activation by carba-
mazepine, suggesting an allosteric effect of
the drug on the mutant channel (Fischer et al.
2009).

A second set of mutations of Nav1.7
(Table 3) underlies many of the PEPD cases
reported thus far. Some cases of PEPD do not
show this linkage to Nav1.7, suggesting involve-
ment of another target (Fertleman et al. 2006).
Severe perirectal pain in PEPD along with skin
flushing can start in infancy and possibly in
utero, but with no reported involvement of feet
and hands (Fertleman et al. 2007). Although
seizures and cardiac symptoms may accompany
PEPD, a link to the expression of the mutant
Nav1.7 channel in sympathetic neurons has not
yet been established. As patients age, pain ex-
tends to ocular and maxillary/mandibular areas
and is triggered by cold, eating, or emotional
state (Fertleman et al. 2007). PEPD symptoms,
in contrast to IEM, are well controlled by the
anticonvulsant sodium channel blocker carba-
mazepine (Fertleman et al. 2006, Dib-Hajj et al.
2008, Estacion et al. 2008).

All IEM mutations in Nav1.7 characterized
thus far shift activation voltage-dependency in
a hyperpolarized direction, increase ramp cur-
rent and slow deactivation (Table 3; Figure 2).
In contrast, PEPD mutations shift the voltage-
dependency of steady-state fast-inactivation in
a depolarizing direction and, depending upon
the specific mutation, may make inactivation
incomplete resulting in a persistent current
(Table 3; Figure 2). The A1632E mutation
displays changes both in hyperpolarizing activa-
tion and depolarizing steady-state inactivation,
and there is a mixed phenotype including IEM
and PEPD symptoms in this patient (Estacion
et al. 2008). Thus, IEM and PEPD mutations
can be considered part of a physiological
continuum that can produce a continuum of
clinical phenotypes including IEM, PEPD, and
overlap disorders with a characteristic of both
(Figure 2). At the cellular level, IEM mutant
Nav1.7 channels lower threshold for single
action potentials and increase firing frequency
in DRG neurons, with all but one (F1449V)

causing a depolarizing shift in resting potential
(Figure 3) (Dib-Hajj et al. 2005, Harty et al.
2006, Rush et al. 2006, Han et al. 2009). PEPD
Nav1.7 mutant channels lower threshold for
single action potential and increase frequency
of firing in DRG neurons, but without alter-
ing resting potential (Dib-Hajj et al. 2008,
Estacion et al. 2008). Impaired inactivation of
PEPD Nav1.7 mutant channels could explain
the favorable response of the patients to
carbamazepine.

Nav1.7-related CIP is caused by recessive
loss-of-function mutations that truncate the
channel protein or impair splicing signals to
prevent the production of channel mRNA (Cox
et al. 2006). Truncated Nav1.7 mutant chan-
nels do not produce functional channels (Cox
et al. 2006, Ahmad et al. 2007), or act as dom-
inant negative proteins (Ahmad et al. 2007).
Heterozygous parents are asymptomatic, indi-
cating that loss of one SCN9A allele does not
lead to haploinsufficiency, and the occurrence
of Nav1.7-related CIP in progeny of noncon-
sanguinous marriages (Goldberg et al. 2007,
Nilsen et al. 2009) indicates a more common
occurrence of carriers of nonfunctional SCN9A
alleles than initially thought after the report-
ing of Nav1.7-related CIP in consanguinous
Pakistani families (Cox et al. 2006). Patients do
not report any form of pain, but report intact
sensory modalities except for impaired olfaction
(Goldberg et al. 2007, Nilsen et al. 2009), and
do not display motor, cognitive, sympathetic,
or gastrointestinal deficits.

To study the effect of gain-of-function
mutations of Nav1.7 on sympathetic neu-
rons, in which Nav1.7 is normally expressed,
Rush et al. (2006) expressed the L858H IEM
Nav1.7 channel mutant (Yang et al. 2004)
in superior cervical ganglion (SCG) neurons.
Current-clamp analysis showed that L858H
mutant channels depolarize resting potential
in both DRG and SCG neurons by 6 mV,
but render DRG neurons hyperexcitable and
SCG neurons hypoexcitable. Co-expression of
Nav1.8, which is normally present in DRG
but not SCG, rescued electrogenesis in SCG
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Figure 2
IEM and PEPD mutations are part of a physiological continuum linked to a continuum of clinical
phenotypes. Shifts in the voltage-dependency of activation and fast-inactivation of each mutant compared to
wild-type hNaV1.7 are plotted for IEM mutants (tan squares) and PEPD mutants (circles) numbered to
identify the specific mutation and reference from which the data were compiled. For PEPD mutations,
same-colored symbols indicate mutations that were characterized electrophysiologically by the same group,
while duplicate numbers indicate that the same mutation was profiled by different groups. The wild-type
control is plotted as a green diamond at (0,0). The dotted lines through (0,0) demarcate between positive and
negative shifts and indicate the outcome for the shifts. The A1632E mutation, from a patient with a mixed
clinical phenotype, plotted with the red star symbol, shows shifts in activation and inactivation common to
both IEM and PEPD mutants. The identities of the numbered IEM mutation are as follows (shown as tan
squares): [1] Q10R (Han et al. 2009), [2] I136V (Cheng et al. 2008), [3] V400M (Fischer et al. 2009), [4]
N395K (Sheets et al. 2007), [5] S241T (Lampert et al. 2006a), [6] F1449V (Dib-Hajj et al. 2005), [7] A863P
(Harty et al. 2006), [8] V872G (Choi et al. 2009), [9] L858F (Han et al. 2006), [10] F216S (Choi et al. 2006),
[11] L858H (Cummins et al. 2004), [12] I848T (Cummins et al. 2004). The identities of the numbered PEPD
mutation are as follows (shown as colored circles): 1 ( gray), T1464I (Fertleman et al. 2006); 2 (blue), V1298F
( Jarecki et al. 2008); 3 (blue), V1299F ( Jarecki et al. 2008); 4 ( gray), I1461T (Fertleman et al. 2006); 4 (blue),
I1461T ( Jarecki et al. 2008); 5 ( gray), M1627K (Fertleman et al. 2006); 5 (orange), M1627K (Dib-Hajj et al.
2008); red star, A1632E (Estacion et al. 2008). Adapted with permission from Estacion et al. (2008).

neurons that express the L858H mutant chan-
nels (Rush et al. 2006). Sympathetic neuron
hypoexcitability may reduce tonic cutaneous
vasoconstriction, thereby contributing to skin
flushing in IEM. Why patients with gain-of-
function mutations in Nav1.7 do not suffer
global sympathetic deficits, however, remains
enigmatic.

LESSONS FROM DISCREPANCIES
BETWEEN HUMAN AND
ANIMAL STUDIES

Can we learn anything from the discrepancies
(Table 2) between different knock-down and
knock-out studies, and from the different phe-
notype in the murine global Nav1.7 knock-out
and Nav1.7-related CIP in humans? Different
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Figure 3
Both Q10R and I848T mutations decrease the action potential threshold in small DRG neurons, and increase firing frequency in small
DRG neurons, but to different degrees. Upper panels: Representative traces from a cell expressing Nav1.7 wild-type channels (blue trace),
showing subthreshold response to 180 pA current injection and subsequent action potentials evoked by injections of 190 pA (current
threshold for this neuron) and 220 pA. Representative traces from a cell expressing Q10R channels ( green trace), showing a lower
current threshold (130 pA for this cell) for action potential generation. Representative traces from a DRG neuron expressing I848T
channels (dark yellow trace), showing a significantly lower current threshold (90 pA for this cell) for action potential generation.
Histogram shows that threshold for action potential generation decreases significantly (∗denotes p < 0.05) in those expressing Q10R
channels and I848T channels. Lower panels: Response of cells expressing wild-type (blue trace), Q10R ( green traces) and I848T (dark
yellow trace) channels respectively to 1 s depolarizing current steps that are 3X the current threshold for action potential generation.
Comparison of mean fire frequency among cells expressing wild-type, Q10R, and I848T channels across the range of current injections
from 25 to 500 pA shows a quantitative difference between the effect on firing frequency of Q10R and I848T mutation, which is
correlated with their hyperpolarized shifts of activation (∗denotes p < 0.05, Q10R versus wild-type; ∗∗denotes p < 0.05, I848T versus
Q10R). Adapted with permission from Han et al. (2009).

animal species, interstrain genetic differences,
sex differences, and differences between re-
sponses to pain in rat (where most knock-down
studies are performed) and mice (knock-out
studies) may explain in part the apparently con-
flicting findings in different studies in experi-
mental pain models (Mogil 2009). Additionally,
multiple splice isoforms of Nav1.3 (Thimma-
paya et al. 2005) and Nav1.7 (Raymond et al.
2004) exist, and it is possible that they may
differentially contribute to hyperexcitability
of neurons in which they are expressed.
Compensatory changes during development
may confound observations in channel-specific
knock-out mice or after permanent ablation of
a class of neurons (Abrahamsen et al. 2008), but

they are less likely to occur in transient (knock-
down) experiments, after acute block in adults
or ablation of a specific cell type in adults.
For instance, ablation of Mrpgrd+ small DRG
neurons in adult mouse produced more pro-
found effects on mechanosensitivity to noxious
stimuli compared to Mrpgrd knock-out mice
(Cavanaugh et al. 2009). Mismatches between
knock-out and knock-down studies may also re-
sult from off-target effects of antisense reagents.
These factors may have contributed to the
narrow conclusion from knock-out studies that
Nav1.7, Nav1.8, and Nav1.9 are contributors
to inflammatory but not neuropathic pain.

Humans tolerate total loss of Nav1.7
with few physiological deficits other than
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insensitivity to pain and blunted olfaction (Cox
et al. 2006, Goldberg et al. 2007, Nilsen et al.
2009). Global Nav1.7 knock-out is, however,
lethal in mice (Nassar et al. 2004). Ahmad et al.
(2007) reported the expression of Nav1.7 in the
hypothalamus and several brainstem nuclei of
rodents but not humans and suggested this as
a basis for the species-specific effect of global
Nav1.7 knock-out. Impaired olfaction in pa-
tients with global Nav1.7 (Goldberg et al. 2007,
Nilsen et al. 2009) suggests a more likely al-
ternative explanation of blunted olfaction in
Nav1.7 knock-out mice, which would be con-
sistent with the report of Nassar et al. (2004)
that neonatal Nav1.7 knock-out mice die be-
cause they apparently are unable to feed.

Additionally, methods of pain assessment
may contribute to the incongruent manifes-
tation of pain behavior in experimental pain
models and human pain symptoms. For ex-
ample, allodynia and mechanical hyperalgesia,
which are typically inferred from reduction in
latency for paw withdrawal threshold using von
Frey filaments, do not describe the response
to suprathreshold stimuli. Electrophysiologi-
cal recordings in Nav1.8 knock-out animals
demonstrated marked reductions in responses
to suprathreshold mechanical stimuli, com-
pared to wild-type, although behavioral assess-
ments could not be used in this range (Matthews
et al. 2006). Interpretation of data supporting
the role of individual sodium channels in pain
necessitates careful consideration of the model
itself and the methods for pain assessment.

PROSPECTS FOR NEW PAIN
THERAPEUTICS

There is a large set of potential targets for devel-
opment of pain therapeutics. Each of the chan-
nels discussed here—Nav1.3, Nav1.7, Nav1.8,

and Nav1.9—merits further study. The genetic
linkage of Nav1.7 to human pain disorders and
the fact that total loss of this channel does not
pose an immediate threat to life (no cardiac,
cognitive, or motor deficit) have triggered sub-
stantial interest in Nav1.7. Total loss of Nav1.7
may predispose these patients to injuries and
their complications. However, in a pharma-
cotherapeutic context, total block of this chan-
nel may not be needed. Indeed, characteriza-
tion of Q10R, a delayed-onset IEM mutation
that produces a small shift in Nav1.7 activation,
has demonstrated a quantitative difference in its
effects on the gating properties of the channel
and on its effects on DRG neuron excitability,
compared to I848T, an early-onset IEM mu-
tation that produced a larger shift in Nav1.7
activation, providing evidence for a genotype-
phenotype correlation (Figure 3) (Han et al.
2009). Nav1.7 plays a definitive role in pain sig-
naling, and current evidence suggests that it acts
as a rheostat that sets the gain on pain. The
physiological coupling of Nav1.7 and Nav1.8
(Rush et al. 2006) suggests that Nav1.8, which is
expressed exclusively in peripheral sensory neu-
rons, may represent another especially oppor-
tune target.

Specific block of peripheral sodium chan-
nels may minimize risk of serious side effects.
Robust Nav1.7 expression within heterologous
cells lends itself to high-throughput screen-
ing of small molecules and biological block-
ers. The discovery of a specific small molecule
Nav1.8 blocker ( Jarvis et al. 2007) is encourag-
ing and suggests that identification of isoform-
specific, small molecule blockers is not unrealis-
tic. Given the important role of the peripheral
channels in pain states, and tolerance to loss
of Nav1.7 (humans, mice), Nav1.8, and Nav1.9
(mice), the pursuit of peripheral sodium chan-
nel blockers is an exciting prospect.
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