

Erythromelalgia and Homeostasis: How Overlooked Factors Can Affect Symptom Patterns and Management

By Sierra Domb

Important Notes:

This information is provided for educational purposes only and is not a substitute for professional medical advice, diagnosis, or treatment. It is intended to share knowledge about factors that may contribute to Erythromelalgia (EM) and support informed decision-making in consultation with a qualified healthcare professional. Any strategies discussed should only be considered with the guidance of a licensed medical provider to ensure they are safe, appropriate, and compatible with your individual symptoms, medical history, and current treatment plan. Outcomes may vary between individuals.

The perspective presented here represents a hypothesis. It is informed by medical literature on EM and homeostasis, as well as the lived experiences of patients, but has not yet been empirically tested. In addition to sharing knowledge, this article encourages the consideration of these factors in future research on EM.

Introduction to Erythromelalgia and Homeostasis

The relationship between the neurovascular disorder Erythromelalgia (EM) and homeostasis is an often-overlooked but potentially important factor in understanding the condition's variability and management. Viewing EM through this lens offers a novel perspective, an evidence-informed hypothesis grounded in medical literature, on the mechanisms that may contribute to its fluctuation. Although this area remains largely unexplored, considering the interplay between neurovascular regulation and homeostatic processes may provide valuable insights for future research and highlight the multifactorial contributors to EM's presentation, heterogeneity, and therapeutic strategies.

Homeostasis is a dynamic physiological process in which the body maintains a stable internal environment to support optimal cellular and organ function. Disruption of homeostasis can lead to pathological states and disease. The neurovascular system plays a central role in this regulation. While homeostasis relies on feedback coordinated by multiple body systems, including the endocrine and renal systems, neurovascular components are particularly relevant in conditions such as EM. The nervous system modulates vascular tone, heart rate, and thermoregulation, while the vascular system distributes oxygen, nutrients, and hormones, removes metabolic wastes, and maintains blood pressure. Integrated neurovascular feedback mechanisms, including sympathetic modulation of vascular tone, sensory nociceptive signaling,

and endothelial-derived vasodilation, coordinate tissue perfusion, oxygen delivery, and thermal balance. Dysregulation of these processes, as observed in EM, can disrupt circulatory and thermal homeostasis, resulting in episodic pain, erythema, and abnormal blood flow. Ongoing research into stabilizing the affected systems and supporting homeostatic function may improve understanding of neurovascular performance and help modulate factors that contribute to symptom flares.

Erythromelalgia (EM) is a rare neurovascular disorder characterized by recurrent burning pain, redness, and swelling, most commonly affecting the feet, hands, and legs, though other areas such as the ears, neck, face, and chest may also be involved. First described by Silas Weir Mitchell in 1878, the term “Erythromelalgia” derives from the Greek words “erythros” (red), “melos” (extremity), and “algos” (pain). EM arises from dysregulation of small nerve fibers and vascular tone, leading to excessive blood flow and localized inflammation.

Primary EM can be genetic or idiopathic. Genetic forms are most commonly linked to SCN9A mutations. These mutations encode the sodium channel Nav1.7 in peripheral nerves, increasing the excitability of C fibers, which are small, unmyelinated nerve fibers that carry slow, burning pain and temperature signals. This hyperexcitability contributes to vascular dysregulation and produces burning pain, redness, and warmth in the extremities. Other genetic anomalies have been proposed, and research continues to explore additional potential causative mutations.

Idiopathic cases occur when no genetic mutation is identified, and symptoms arise spontaneously without other underlying conditions. The pathophysiology involves both small nerve fiber dysfunction, causing abnormal pain signaling, and arteriolar dysregulation, leading to inappropriate dilation of blood vessels. Symptoms may be triggered by heat, physical activity, or stress. Secondary EM occurs due to underlying conditions such as myeloproliferative disorders, autoimmune diseases, hematologic conditions, peripheral neuropathies, or external factors including certain medications, often presenting asymmetrically, with additional symptoms such as fatigue or joint pain. Regardless of the cause, EM is consistently marked by episodic burning pain, redness, and swelling.

Managing Erythromelalgia: Common Approaches

While each person’s experience and medical history is unique, many individuals with EM are familiar with standard first-line approaches. These include avoiding triggers such as heat, prolonged exercise or standing, tight footwear, and using cooling strategies such as fans, cold compresses, elevating affected limbs, or other methods. Some may use topical creams, including lidocaine for temporary numbing, capsaicin to reduce nerve signaling, or ketamine-amitriptyline for local pain. Oral medications such as sodium channel blockers, anticonvulsants, antidepressants, calcium channel blockers, or aspirin may also be used, particularly in EM

associated with blood disorders. In more severe cases, procedures may be considered. Effectiveness varies widely and treatments should be individualized under the guidance of a qualified healthcare professional.

Symptom Fluctuations and Triggers

Even with standard approaches, people with EM often experience flares or fluctuations in symptoms. Symptoms may be worse at the end of the day, before bedtime, or during hormonal changes such as menstruation, premenstrual syndrome, or menopause. Physical and emotional stress, fatigue, and sensory overstimulation can intensify symptoms, emphasizing that flare-ups may still occur despite careful management. Understanding these factors provides insight into what may be occurring in the body beyond the usual explanations of EM.

The Role of Homeostasis, the Brain, and the Nervous System in Erythromelalgia

EM receives far less attention than many other conditions, so sharing evidence-based knowledge can help people with EM and their healthcare providers better understand experiences, recognize patterns, and navigate the condition. Medical specialties such as vascular, rheumatologic, and neurological often focus exclusively on their own areas and do not always collaborate, so symptoms that involve multiple systems may be overlooked, even though these factors are highly relevant for EM. While research emphasizes vascular abnormalities, small fiber neuropathy, and genetic mutations (SCN9A), fewer discussions address the role of homeostasis, brain-body regulation, neuroendocrine signaling, and central nervous system activity. Recognizing these often-overlooked elements helps explain complex symptom patterns and suggests ways to maintain overall health.

Homeostasis (the body's ability to maintain a stable internal environment despite external changes) is central to understanding why EM symptoms fluctuate. Relevant systems include the hypothalamus (the regulatory center for homeostasis), the pituitary gland (which coordinates hormone release), and the autonomic nervous system ("fight-or-flight" and "rest-and-digest" responses). In EM, these systems may become unstable, contributing to overreaction to heat, fluctuating pain thresholds, heightened hormonal sensitivity, and swings in autonomic activity. The brain may misinterpret normal sensory signals, such as warmth, activity, or stress, as threats, amplifying peripheral nerve firing and keeping the autonomic nervous system in overdrive. Central regulation is disrupted, producing dysregulated neurovascular responses, including excessive or unpredictable dilation or constriction of small blood vessels, resulting in redness, warmth, swelling, and burning pain. Stabilizing these systems may enhance neurovascular function, improve overall body regulation, and modulate factors that contribute to symptom flares.

Hormonal Influences on Erythromelalgia and Homeostasis

Hormonal rhythms play a significant role in EM, particularly in women, who make up a large portion of cases. Estrogen and progesterone influence vasodilation and constriction, modulate pain sensitivity via TRPV1 receptors and sodium channels including Nav1.7, and affect thermoregulation thresholds. Fluctuations in these hormones can therefore alter vascular tone, pain processing, and temperature regulation. Flares may worsen during the luteal phase of the menstrual cycle, perimenopause, or menopause, reflecting the influence of the hypothalamic-pituitary-gonadal axis (which governs reproductive hormone release and affects autonomic nervous system activity, vascular tone, and central nervous system excitability). Stabilizing hormonal fluctuations may reduce overactivation of sensory nerves and unpredictable vasodilation that contribute to EM flares.

Circadian Rhythms and Flares Before Sleeping

Many individuals with EM notice that keeping hands, feet, or other affected areas uncovered, adjusting positions, elevating limbs, or using fans or other cooling methods can make sleep more comfortable. Less commonly discussed is that flares at the end of the day are also linked to circadian rhythms and homeostasis. Toward the end of the day, regardless of when you go to bed, core body temperature rises slightly, cortisol levels naturally decline, and melatonin increases (which can dilate blood vessels and influence pain perception), potentially contributing to symptom flares. When homeostasis is unstable, these changes may amplify vascular and neural responses, triggering flares. Poor sleep, stress, or irregular circadian patterns can worsen vulnerability.

Central Nervous System Contributions to EM

EM often involves central sensitization, in which neurons in the spinal cord and brainstem become hyperresponsive to peripheral signals. Even mild sensory input, such as light touch or mild warmth, may be interpreted as intensely painful. Descending pain modulation pathways, including the periaqueductal gray and rostral ventromedial medulla, may be less effective in EM, leading to exaggerated pain responses. Stabilizing homeostasis through temperature management, pacing, stress reduction, and interventions that promote neuroplasticity may reduce central nervous system overreaction, decreasing flare intensity and frequency. Techniques that enhance parasympathetic tone, such as mindfulness-based cognitive therapy (MBCT), neofunctional deep breathing, and neuroplasticity-focused interventions, may strengthen descending inhibitory pathways and recalibrate central pain processing. These strategies are supported by evidence in chronic pain and neuroplasticity research, though EM-specific studies are limited.

Sensory Nerves, Neurovascular Dysregulation, and Neuroplasticity

Peripheral sensory nerves in EM are hyperactive, transmitting exaggerated pain signals, while small blood vessels may dilate excessively or constrict unpredictably, amplifying signals and destabilizing homeostasis. Neuroplasticity (the brain's ability to reorganize and form new neural connections) offers a mechanism to retrain signal processing. Interventions such as MBCT, graded sensory exposure, biofeedback, and pain reprocessing may reduce hypersensitivity, stabilize autonomic responses, and strengthen descending pain modulation. These central strategies complement peripheral interventions, including temperature management, hydration, and managing activities, supporting overall symptom management.

Circulatory Stability, Temperature Control, and Autonomic Plasticity

Small blood vessels in EM often fail to respond appropriately to temperature or activity changes. Maintaining hydration, pacing activities, avoiding prolonged standing or walking in heat, and cooling affected extremities can stabilize circulation and reduce sudden vasodilation or constriction. Repeated controlled exposure may promote autonomic plasticity (training the autonomic nervous system to respond more appropriately to environmental changes). Biofeedback can also help detect early signs of vascular or thermal changes, allowing proactive interventions. While not a cure, these strategies offer a practical, physiology-based approach to supporting homeostasis.

Nutrition, Metabolism, and Autonomic Regulation

Important Note: Before making any changes to your diet, taking supplements, or implementing interventions related to nutrition, metabolism, or autonomic regulation, it is important to consult a qualified healthcare provider to assess your individual needs and determine what is safe and appropriate for you.

Proper nutrition and metabolic balance support nerve and vascular function. Electrolytes such as magnesium, potassium, and calcium, omega-3 fatty acids, are critical for nerve conduction, vascular smooth muscle function, and neurovascular stability. While vitamin D deficiency does not cause EM, optimizing vitamin D levels may help modulate inflammation and support nerve function, potentially reducing pain severity in some patients. Understandably, many individuals with EM limit sun exposure, which can exacerbate symptoms and contribute to low vitamin D levels, so it is important to consult a healthcare provider regarding potential deficiencies and supplementation. Stable blood sugar helps prevent autonomic fluctuations that could trigger vasodilation or nerve hyperexcitability. Nutritional support may also influence neuroimmune signaling, as sensory neurons release neuropeptides such as Calcitonin Gene-Related Peptide that

dilate vessels and amplify local inflammation. Supporting metabolic and nutritional stability may help maintain homeostasis and reduce neuroimmune-driven flare activity.

Practical Science: Accessible, Evidence-Based Strategies

Many have already established Erythromelalgia (EM) management strategies, such as avoiding heat, staying cool, medications, or procedures, which are widely recognized. This section highlights the lesser-discussed approaches that may influence EM and support homeostasis. These strategies focus on stabilizing interconnected systems, including the brain, autonomic nervous system, peripheral nerves, vascular function, hormones, and circadian rhythms. Outcomes can vary, so any approach should be discussed with a qualified healthcare professional and tailored to each individual's symptoms, medical history, and current treatments. When appropriate, these strategies may complement existing EM management plans.

Brain and Nervous System Support

Activating the parasympathetic system through controlled neofunctional breathing exercises, mindfulness interventions such as mindfulness-based cognitive therapy (MBCT), gentle movement, and neuroplasticity-focused therapies like pain reprocessing or graded sensory exposure can reduce sympathetic overdrive, strengthen descending pain modulation, and recalibrate central pain processing. For example, fMRI scans before and after MBCT demonstrate its potential to induce functional changes and alter brain activity. These practices can help rewire the brain's responses to pain or threats, reduce hypersensitivity, and build resilience over time.

Limiting overstimulation and exposure to overwhelming sensory stimuli, including noise, bright lights, and chaotic environments, further supports autonomic stability and central nervous system regulation, helping to reduce sensory overload. Supporting brain and nervous system health is crucial not only for managing EM but also for overall health, as it helps maintain proper communication between organs, hormone regulation, and stress responses. Strategies such as adequate sleep, mental stimulation, balanced nutrition, and stress management promote nervous system resilience and help keep multiple systems functioning optimally. While these interventions do not treat the underlying cause of EM, they support homeostasis, stabilize autonomic responses, improve symptom management, and enhance overall quality of life.

Circadian and Hormonal Regulation

Maintaining regular sleep-wake cycles, morning exposure to natural light, and minimizing nighttime screen exposure helps synchronize circadian rhythms and stabilize neuroendocrine signaling. Adequate, cool, and uninterrupted sleep reduces pro-inflammatory cytokines and

supports vascular and neural homeostasis. Tracking and managing hormone levels, including estrogen, progesterone, cortisol, and thyroid hormones, can provide insight into predictable symptom fluctuations and guide individualized strategies for women and others experiencing hormone-related flares.

Peripheral and Vascular Considerations

Maintaining hydration and ensuring adequate intake of electrolytes and nutrients, including magnesium, potassium, calcium, and omega-3 fatty acids, supports nerve conduction, vascular tone, and overall neurovascular signaling. Though it does not address the underlying cause of EM, optimizing vitamin D and correcting deficiency may improve nerve health and reduce inflammation, which may lessen pain. Many individuals with EM limit sun exposure, as heat can exacerbate the condition or trigger symptom flares, which may contribute to low vitamin D levels. To address potential deficiencies and optimize nutrient levels, it is important to consult a healthcare provider to test your levels and determine if supplementation is necessary.

Temperature regulation and activity pacing, along with cooling measures such as air conditioning or cold compresses, can help prevent excessive vasodilation or constriction. Low-impact exercise benefits overall health, including brain function, and may reduce inflammation while supporting circulation. Individuals with EM should carefully adjust exercise intensity and duration to avoid triggering flares and consult a qualified healthcare professional before starting or modifying any exercise program.

Monitoring and Feedback

Biofeedback tools that track skin temperature, blood flow, or heart rate can alert individuals to early signs of flares, allowing proactive interventions and more precise management. By combining central, peripheral, and metabolic strategies, people with EM can support overall homeostasis, potentially reduce the severity and frequency of flares, and gain practical insight into how their bodies respond to triggers.

Neuromodulation and EM

Neuromodulation refers to techniques that modify nerve activity to help manage pain and regulate neurovascular function. In EM, peripheral sensory nerves are hyperactive, and the autonomic nervous system can be overactive; neuromodulation aims to address these dysfunctions by influencing both central and peripheral pathways.

Examples include transcutaneous electrical nerve stimulation, which stimulates large-diameter nerve fibers to reduce pain signaling and may help stabilize autonomic tone, and vagus nerve stimulation, which can modulate sympathetic overactivity and inflammation. Some refractory EM cases have been treated experimentally with peripheral or spinal cord stimulation.

While preliminary reports and case studies suggest that neuromodulation may reduce flare intensity and improve symptom management, research for EM is still limited.

Rebalancing from the Inside Out

EM involves the brain, autonomic nervous system, peripheral nerves, blood vessels, hormones, and circadian rhythms. Supporting homeostasis is not a cure but may help reduce flare frequency and intensity. Stabilizing central regulation, hormonal cycles, neurovascular function, and metabolic balance can improve symptom management and quality of life. Understanding these mechanisms helps individuals with EM recognize symptom patterns, make informed decisions, and explore strategies to maintain systemic balance while continuing professional medical care. Continued multidisciplinary research is essential to better support those affected by EM worldwide.

References

Adamec, I., Lakoš Jukić, I., & Habek, M. (2016). Erythromelalgia as a manifestation of autonomic nervous system involvement in multiple sclerosis. *Multiple Sclerosis and Related Disorders*, 8, 1-3. <https://doi.org/10.1016/j.msard.2016.04.003>

Algarni, A. S., Alharthi, R. M., Alqurashi, S. O., Alghanmi, R. M., Aldawsari, R. R., Alghamdi, M. A., & Samargandi, R. (2025). Comparative efficacy and tolerability of treatments for erythromelalgia: A systematic review. *Medicina*, 61(5), 920. <https://doi.org/10.3390/medicina61050920>

Al-Rashed, F., Alsaeed, H., Akhter, N., Alabduljader, H., Al-Mulla, F., & Ahmad, R. (2025). Impact of sleep deprivation on monocyte subclasses and function. *Journal of Immunology*, 214(3), 347-359. <https://doi.org/10.1093/jimmun/vkae016>

Aronoff, J. E., & Trumble, B. C. (2025). An evolutionary medicine and life history perspective on aging and disease: Trade-offs, hyperfunction, and mismatch. *arXiv*. <https://arxiv.org/abs/2504.08995>

Bechtel, W., & Bich, L. (2024). Situating homeostasis in organisms: Maintaining organization through time. *The Journal of Physiology*, 602(22), 6003-6020. <https://doi.org/10.1113/JP286883>

Bower, J. E., & Irwin, M. R. (2016). Mind-body therapies and control of inflammatory biology: A descriptive review. *Brain, Behavior, and Immunity*, 51, 1-11.
<https://doi.org/10.1016/j.bbi.2015.06.012>

Callan, G. M., Freitag, F., & Tolebeyan, A. S. (2024). Red ear syndrome: A case series and review of the literature. *Journal of Medical Case Reports*, 18, 327.
<https://doi.org/10.1186/s13256-024-04485-4>

Cohen, J. S. (2000). Erythromelalgia: New theories and new therapies. *Journal of the American Academy of Dermatology*, 43(5 Pt 1), 841-847. <https://doi.org/10.1067/mjd.2000.109301>

Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological stress and disease. *JAMA*, 298(14), 1685-1687. <https://doi.org/10.1001/jama.298.14.1685>

Davis, M. D., O'Fallon, W. M., Rogers, R. S., 3rd, & Rooke, T. W. (2000). Natural history of erythromelalgia: Presentation and outcome in 168 patients. *Archives of Dermatology*, 136(3), 330-336. <https://doi.org/10.1001/archderm.136.3.330>

Davis, M. D., Sandroni, P., Rooke, T. W., & Low, P. A. (2003). Erythromelalgia: Vasculopathy, neuropathy, or both? A prospective study of vascular and neurophysiologic studies in erythromelalgia. *Archives of Dermatology*, 139(10), 1337-1343.
<https://doi.org/10.1001/archderm.139.10.1337>

Dubey, A., & Muley, P. A. (2023). Meditation: A promising approach for alleviating chronic pain. *Cureus*, 15(11), e49244. <https://doi.org/10.7759/cureus.49244>

Faraut, B., Boudjeltia, K. Z., Vanhamme, L., & Kerkhofs, M. (2012). Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. *Sleep Medicine Reviews*, 16(2), 137-149. <https://doi.org/10.1016/j.smrv.2011.05.001>

Fan, C., Wu, M., Liu, H., Chen, X., Gao, Z., Zhao, X., Zhou, J., & Jiang, Z. (2024). Effects of meditation on neural responses to pain: A systematic review and meta-analysis of fMRI studies. *Neuroscience and Biobehavioral Reviews*, 162, 105735.
<https://doi.org/10.1016/j.neubiorev.2024.105735>

Freedman, M., Freedman, B. A., Miller, J. S., Bierwirth, P., & Nelson, W. R. (2024). Treating erythromelalgia with interosseous membrane stimulation: An autonomic basis for the condition and its treatment. *Medical Acupuncture*, 36(2), 63-69. <https://doi.org/10.1089/acu.2023.0098>

Fyon, A., & Drion, G. (2024). Neuromodulation and homeostasis: Complementary mechanisms for robust neural function. *arXiv*. <https://arxiv.org/abs/2412.04172>

Gennari, F. J. (2002). Disorders of potassium homeostasis: Hypokalemia and hyperkalemia. *Critical Care Clinics*, 18(2), 273-vi. [https://doi.org/10.1016/s0749-0704\(01\)00009-4](https://doi.org/10.1016/s0749-0704(01)00009-4)

Golshan, F., & Mickleborough, M. J. S. (2025). fMRI-based explanations for how meditation could modulate pain processing. *Frontiers in Neuroscience*, 19, 1561580. <https://doi.org/10.3389/fnins.2025.1561580>

González-Moret, R., Cebolla, A., Cortés, X., et al. (2020). The effect of a mindfulness-based therapy on different biomarkers among patients with inflammatory bowel disease: A randomised controlled trial. *Scientific Reports*, 10, 6071. <https://doi.org/10.1038/s41598-020-63168-4>

Heidrich, H. (2010). Functional vascular diseases: Raynaud's syndrome, acrocyanosis and erythromelalgia. *VASA. Zeitschrift für Gefäßkrankheiten*, 39(1), 33-41. <https://doi.org/10.1024/0301-1526/a000003>

Holick, M. F. (2007). Vitamin D deficiency. *The New England Journal of Medicine*, 357(3), 266-281. <https://doi.org/10.1056/NEJMra070553>

Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. *Nutrients*, 12(6), 1562. <https://doi.org/10.3390/nu12061562>

Jha, S. K., Karna, B., & Goodman, M. B. (2023). Erythromelalgia. In StatPearls. *StatPearls Publishing*. <https://www.ncbi.nlm.nih.gov/books/NBK557787/>

Lee, J. U., Ma, J. E., Sartori Valinotti, J. C., Rooke, T. W., Sandroni, P., Watson, J. C., & Davis, M. D. (2024). Procedural interventions for erythromelalgia: A narrative review. *Vascular Medicine*, 29(6), 723-732. <https://doi.org/10.1177/1358863X241279427>

Leroux, M. B. (2018). Erythromelalgia: A cutaneous manifestation of neuropathy? *Anais Brasileiros de Dermatologia*, 93(1), 86-94. <https://doi.org/10.1590/abd1806-4841.20187535>

Moreno, J. (2024). Modulation of inflammatory response and pain by mind-body therapies as meditation. *Brain Behavior and Immunity Integrative*, 5, 100036. <https://doi.org/10.1016/j.bbii.2023.100036>

Kong, J., Xie, Y., Fan, R., Wang, Q., Luo, Y., & Dong, P. (2025). Exercise orchestrates systemic metabolic and neuroimmune homeostasis via the brain-muscle-liver axis to slow down aging and neurodegeneration: A narrative review. *European Journal of Medical Research*, 30(1), 475.

<https://doi.org/10.1186/s40001-025-02751-9>

Kopplin, C. S., & Rosenthal, L. (2022). The positive effects of combined breathing techniques and cold exposure on perceived stress: A randomised trial. *Current Psychology*, 1-13.

<https://doi.org/10.1007/s12144-022-03739-y>

Lee, J. U., Ma, J. E., Sartori Valinotti, J. C., Rooke, T. W., Sandroni, P., Watson, J. C., & Davis, M. D. (2024). Procedural interventions for erythromelalgia: A narrative review. *Vascular Medicine*, 29(6), 723-732. <https://doi.org/10.1177/1358863X241279427>

Li, T. T., Wang, H. Y., Zhang, H., Zhang, P. P., Zhang, M. C., Feng, H. Y., Duan, X. Y., Liu, W. B., Wang, X. W., & Sun, Z. G. (2023). Effect of breathing exercises on oxidative stress biomarkers in humans: A systematic review and meta-analysis. *Frontiers in Medicine*, 10, 1121036. <https://doi.org/10.3389/fmed.2023.1121036>

Ma, J. E., Lee, J. U. J., Sartori-Valinotti, J. C., Rooke, T. W., Sandroni, P., & Davis, M. D. P. (2023). Erythromelalgia: A review of medical management options and our approach to management. *Mayo Clinic Proceedings*, 98(1), 136-149.

<https://doi.org/10.1016/j.mayocp.2022.08.005>

McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. *Dialogues in Clinical Neuroscience*, 8(4), 367-381.

<https://doi.org/10.31887/DCNS.2006.8.4/bmcewen>

Michetti, C., & Benfenati, F. (2024). Homeostatic regulation of brain activity: From endogenous mechanisms to homeostatic nanomachines. *American Journal of Physiology: Cell Physiology*, 327(6), C1384-C1399. <https://doi.org/10.1152/ajpcell.00470.2024>

Müller, L., & Di Benedetto, S. (2025). Bridging the brain and gut: Neuroimmune mechanisms of neuroinflammation and therapeutic insights. *Frontiers in Cellular Neuroscience*, 19, 1590002. <https://doi.org/10.3389/fncel.2025.1590002>

Müller, L., Di Benedetto, S., & Müller, V. (2025). From homeostasis to neuroinflammation: Insights into cellular and molecular interactions and network dynamics. *Cells*, 14(1), 54. <https://doi.org/10.3390/cells14010054>

Novella, S. P., Hisama, F. M., Dib-Hajj, S. D., & Waxman, S. G. (2007). A case of inherited erythromelalgia. *Nature Clinical Practice: Neurology*, 3(4), 229-234.

<https://doi.org/10.1038/ncpneuro0425>

Patel, P., Zhang, Y., Unikel, L. H., & Edwards, C. (2019). A case of sporadic erythromelalgia presenting with small fibre neuropathy. *BMJ Case Reports*, 12(10), e230549.

<https://doi.org/10.1136/bcr-2019-230549>

Sandroni, P., Davis, M. D., Harper, C. M., Rogers, R. S., 3rd, O'Fallon, W. M., Rooke, T. W., & Low, P. A. (1999). Neurophysiologic and vascular studies in erythromelalgia: A retrospective analysis. *Journal of Clinical Neuromuscular Disease*, 1(2), 57-63.

<https://doi.org/10.1097/00131402-199912000-00001>

Skeik, N., Rooke, T. W., Davis, M. D., Davis, D. M., Kalsi, H., Kurth, I., & Richardson, R. C. (2012). Severe case and literature review of primary erythromelalgia: Novel SCN9A gene mutation. *Vascular Medicine*, 17(1), 44-49. <https://doi.org/10.1177/1358863X11422584>

Tang, Z., Chen, Z., Tang, B., & Jiang, H. (2015). Primary erythromelalgia: A review. *Orphanet Journal of Rare Diseases*, 10, 127. <https://doi.org/10.1186/s13023-015-0347-1>

Tham, S. W., & Giles, M. (2018). Current pain management strategies for patients with erythromelalgia: A critical review. *Journal of Pain Research*, 11, 1689-1698.

<https://doi.org/10.2147/JPR.S154462>

Wen, W., & Turrigiano, G. G. (2024). Keeping your brain in balance: Homeostatic regulation of network function. *Annual Review of Neuroscience*, 47(1), 41-61.

<https://doi.org/10.1146/annurev-neuro-092523-110001>

Wong, S. H., Pontillo, G., Kanber, B., Prados, F., Wingrove, J., Yiannakas, M., Davagnanam, I., Gandini Wheeler-Kingshott, C. A. M., & Toosy, A. T. (2024). Visual snow syndrome improves with modulation of resting-state functional MRI connectivity after mindfulness-based cognitive therapy: An open-label feasibility study. *Journal of Neuro-Ophthalmology*, 44(1), 112-118.

<https://doi.org/10.1097/WNO.0000000000002013>

Wong, S. H., & Wingrove, J. (2025). Mindfulness and MBCT-vision (mindfulness-based cognitive therapy modified for visual symptoms) for visual snow syndrome: A therapeutic perspective. *Frontiers in Neurology*, 16, 1596642. <https://doi.org/10.3389/fneur.2025.1596642>

Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z., & Goolkasian, P. (2010). Mindfulness meditation improves cognition: Evidence of brief mental training. *Consciousness and Cognition*, 19(2), 597-605. <https://doi.org/10.1016/j.concog.2010.03.014>